
Extended IDL Help
This page was created by the IDL library routine mk_html_help. For more information
on this routine, refer to the IDL Online Help Navigator or type:

 ? mk_html_help

at the IDL command line prompt.

Last modified: Thu Sep 5 12:44:09 2013.

List of Routines
• ATANH
• ATOMIC_WEIGHT
• BESELI_FRACT
• BESELK_FRACT
• CHEM2LBL
• CHISQR
• CIRCLE_FIT
• CLEAR
• COM_FIND
• CONT_IMAGE
• CONT_IMAGE2
• CURVE_LABEL
• CW_BGROUP_RXO
• CW_CURVE_LABEL
• CW_DRAWSIZE
• CW_FIELD_RXO
• CW_FSLIDER_RXO
• CW_LEGEND_RXO
• CW_PLOTAXES
• CW_PLOTAXIS
• CW_PLOTLABEL
• CW_PLOTSTYLE
• CW_PLOTSTYLES
• CW_PLOTTITLE_CHAR
• CW_VECTOR
• DGTZ_IMAGE

• DGTZ_PLOT
• DIALOG
• DISPLAYED_TABLE_CELLS
• DISPLAY_FONT
• DLIB
• EDGE_FIND
• ELECTRON_MFP
• EPLOT
• EROM
• ERRORF_FIT
• EXPO_FIT
• FILE_DATE
• FINDEX
• FLOYD_SAMPLING
• FRACTAL_FIT
• FWHM
• GAUSSEXPO_FIT
• GAUSS_FIT
• GET_PEAK
• GET_PT
• GET_ROI
• GHOSTVIEW
• GREEK
• KAISER_BESSEL
• LEGEND_RXO
• LPRINT
• LS
• MAKE_LATEX_TBL
• MK_BITARRAY
• MK_NEW_PTRS
• MORE
• MPFIT
• OEPLOT
• PLOT_MOVIE
• PLOT_PRINT
• PLOT_TEXT
• PROFILE_NI
• PTRS_NEW
• PWD
• RECROI
• RECTANGLE

• REC_IMAGE
• ROI_WIDTH
• ROTATION
• ROT_MAT
• RXO_COLOR
• SECONDS2CLOCK
• SHIFT_PLOT
• SHOW_CT
• SINC
• SINCSQUARE_FIT
• SMALL_WINDOW
• SP
• SQUARE_PLOT
• SYM
• SYMBOLS
• TEXT_WIDTH
• TRACK_PLOT
• TWOSCOMPLEMENT
• VALUE_TO_INDEX
• VECTOR
• WRITE_MPEG
• XDISPLAYFILE
• XWD2GIF

Routine Descriptions
ATANH

[Next Routine] [List of Routines]
 NAME:

 ATANH

 PURPOSE:

 Inverse of TANH

 atanh z = 1/2 ln((1+z)/(1-z))

 CALLING SEQUENCE:

 Result=ATANH(Input)

 MODIFICATION HISTORY:

 David L. Windt, RXO, April 2013
 davidwindt@gmail.com

(See ./atanh.pro)

ATOMIC_WEIGHT

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 ATOMIC_WEIGHT

 PURPOSE:

 Function to return the atomic weight of specified chemical
 elements.

 CALLING SEQUENCE:

 Result=ATOMIC_WEIGHT(SYMBOL)

 INPUTS:

 SYMBOL - A string or string array specifying the name or names
 of the chemical elements. Each element of SYMBOL must
 be a one or two character string, corresponding to the
 chemical symbol of the atom. Case is ignored.

 KEYWORD PARAMETERS:

 ALL - Set this to return all 92 atomic weights and symbols.

 OUTPUTS:

 Result - The atomic weight of the specified atom or atoms.

 RESTRICTIONS:

 Only the first 92 elements are available.

 PROCEDURE:

 The mass of the proton is first calculated using quantum field
 theory, and then...actually, it's just a lookup table.

 EXAMPLE:

 Print the atomic weight of carbon:

 print,ATOMIC_WEIGHT('C')

 MODIFICATION HISTORY:

 David L Windt, Bell Labs, May 1997

 1-Sep-13: Returns a value of -1 if the value for SYMBOL is invalid.

 davidwindt@gmail.com

(See ./atomic_weight.pro)

BESELI_FRACT

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 BESELI_FRACT

 PURPOSE:

 This function returns the Modified Bessel Function of the
 First Kind of Order N, for any N, i.e., including fractional
 and negative orders.

 CALLING SEQUENCE:

 Result = BESELI_FRACT(X, N)

 INPUTS:

 X - The value for which the I Bessel function is required. X
 must be greater than 0. The result will have the same
 dimensions as X.

 N - The Bessel function order.

 PROCEDURE:

 The series expansion

 I_n(x) = SUM_(k=0->inf) [(x/2)^(n+2k) / k! Gamma(n+k+1)]

 is used, and is terminated when the k'th term is less than .001.

 MODIFICATION HISTORY:

 David L. Windt, Bell Laboratories, June 1993
 windt@bell-labs.com

(See ./beseli_fract.pro)

BESELK_FRACT

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 BESELK_FRACT

 PURPOSE:

 This function returns the Modified Besel Function of the Second
 Kind of order N, for any N, i.e., including fractional and
 negative orders.

 CALLING SEQUENCE:

 Result = BESELK_FRACT(X, N)

 INPUTS:

 X - The value for which the K Bessel function is required. X
 must be greater than 0. The result will have the same
 dimensions as X.

 N - The Bessel function order.

 PROCEDURE:

 This function uses the BESELI_FRACT function:

 Results=(BESELI_FRACT(X,-N)-BESELI_FRACT(X,B))*!PI/2./SIN(N*!PI)

 MODIFICATION HISTORY:

 David L. Windt, Bell Laboratories, June 1993
 windt@bell-labs.com

(See ./beselk_fract.pro)

CHEM2LBL

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 CHEM2LBL

 PURPOSE:

 Convert a 'chemical name', i.e. a string containing characters
 and numbers - H2O, for example - into a string containing
 formatting commands so that the numbers become subscripts when
 using the result in IDL graphics.

 For example: "H2O" would come back as "H!d2!nO".

 CALLING SEQUENCE:

 Result = CHEM2LBL(CHEMICAL)

 INPUTS:

 CHEMICAL - a string or string array specifying the chemical name(s).

 KEYWORD PARAMETERS:

 NOREFERENCE - if this keyword is set, text following an
 underscore character in CHEMICAL will be
 ignored. The default behavior is that
 any text following an underscore character
 will be surrounded by brackets (i.e. < >)
 and subscripted. For example, "SiO2_tetragonal"
 will be returned as "!nSiO!d2 <tetragonal>!n"

 MODIFICATION HISTORY:

 David L. Windt, March 1997
 windt@bell-labs.com

 June 2013: CHEMICAL can now be a string array.
 davidwindt@gmail.com

(See ./chem2lbl.pro)

CHISQR

[Previous Routine] [Next Routine] [List of Routines]
 NAME:
 CHISQR

 PURPOSE:

 Compute the Chi Square statistic of a function and a fit
 to the function.

 CALLING SEQUENCE:

 Result=CHISQR(Y,SIGMA_Y,YFIT)

 INPUTS:
 Y - Input array.

 SIGMA_Y - Uncertainty in Y.

 YFIT - Fit to Y.

 PROCEDURE:

 CHISQR=TOTAL((Y-YFIT)^2/SIGMAY^2)

 MODIFICATION HISTORY:

 David L. Windt, Bell Labs, November 1989
 windt@bell-labs.com

(See ./chisqr.pro)

CIRCLE_FIT

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 CIRCLE_FIT

 PURPOSE:

 Fit y=f(x) where:
 F(x) = yc+SQRT(r^2-(x-xc)^2)
 (xc,yc)=circle center, r=circle radius

 CALLING SEQUENCE:

 YFIT = CIRCLE_FIT(X,Y,A)

 INPUTS:

 X - independent variable, must be a vector.

 Y - dependent variable, must have the same number of points ;
 as x.

 A - initial guess at fit coefficienct [xc, yc, r]

 OUTPUTS:

 YFIT - fitted function.

 OPTIONAL OUTPUT PARAMETERS:

 A - Fit coefficients. a three element vector containing xc,
 yc, and r.

 MODIFICATION HISTORY:

 Adapted from GAUSSFIT

 D. L. Windt, davidwindt@gmail.com
 Aug 2010

(See ./circle_fit.pro)

CLEAR

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 CLEAR

 CATEGORY:

 Stupid little convenience routines.

 PURPOSE:

 Clear the screen, just like the Unix command.

 CALLING SEQUENCE:

 CLEAR

 RESTRICTIONS:

 Only works on Unix platforms.

 MODIFICATION HISTORY:

 David L. Windt, Bell Labs, November 1989
 windt@bell-labs.com

(See ./clear.pro)

COM_FIND

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 COM_FIND

 PURPOSE:

 Return the 'center-of-mass' of the supplied data array.

 CALLING SEQUENCE:

 Result = COM_FIND(X,Y)

 INPUTS:

 X, Y - 1D data arrays.

 OUTPUTS:

 Result = The X value corresponding to the center of mass,
 i.e., the X value that divides the integral of Y in half.
 Specifically, if X_com is the center-of-mass value, then

 Integral(Y)_from_0_to_X_com = Integral(Y)_from_X_com_to_MAX(X)

 KEYWORD PARAMETERS:

 INTERPOLATE - Set this keyword to return a 'floating-point'
 index instead of an integer value.

 X_com=COM_FIND(X,Y,/INTERPOLATE)

 EXAMPLE:

 Make some noisy data:

 x=VECTOR(0.,5.,100)
 y=SIN(x)+0.1*RANDOMN(seed,100)

 Determine the center of mass:

 x_com=COM_FIND(y)

 MODIFICATION HISTORY:

 David L. Windt, December 2003

 windt@astro.columbia.edu

(See ./com_find.pro)

CONT_IMAGE

[Previous Routine] [Next Routine] [List of Routines]

 NAME:

 CONT_IMAGE

 PURPOSE:

 Overlay an image and a contour plot.

 CALLING SEQUENCE:

 CONT_IMAGE, IMAGE[,X,Y]

 INPUTS:

 IMAGE - 2 dimensional array to display.

 OPTIONAL INPUTS:

 X - 1 dimensional array of x-axis values.

 Y - 1 dimensional array of y-axis values.

 KEYWORD PARAMETERS:

 WINDOW_SCALE - Set to scale the window size to the image size,
 otherwise the image size is scaled to the
 window size. Ignored when outputting to
 devices with scalable pixels.

 ASPECT - Set to retain image's aspect ratio. Assumes square
 pixels. If ASPECT is set, the aspect ratio is
 retained.

 INTERP - Set to bi-linear interpolate if image is resampled.

 NOCONTOUR - Set to just display the image with plot axes.

 INVERT - Set to invert the image scale, ie image=255-image

 TOP - The maximum value of the scaled image. If not set, then
 it's set to (!d.n_colors < 255)-1.

 MIN_VALUE - The minimum value of IMAGE to be displayed.

 MAX_VALUE - The maximum value of IMAGE to be displayed.

 COLORBAR - Set to display a color bar alongside the image.

 BAR_TITLE - A text string to be used as the colorbar title if
 COLORBAR is set.

 BAR_WIDTH - Width of the colorbar, in pixels. Default is 10
 pixels for non-scalable pixel devices, or 2% of
 the plot width for scalable pixel devices.

 BAR_OFFSET - Offset spacing between plot and colorbar. Default
 is 10.

 NOAXIS - Set to inhibit drawing plot axes

 NOSCALE - Set to inhibit scaling of input array.

 NLEVELS - CONTOUR keyword.

 MODIFICATION HISTORY:

 Adapted (i.e. stolen) from IMAGE_CONT.

 D. L. Windt, Bell Laboratories, Nov 1989.

 April 1994:
 Changed image scaling to go from 32 to !d.n_colors, so that
 TEK_COLOR can be called to use first 32 colors for other plotting.

 Added _EXTRA keyword.

 March 1998 - Added TOP, MIN_VALUE, MAX_VALUE, COLORBAR, and
 BAR_TITLE keywords. Also fixed quite a few bugs.
 Note that setting the XSTYLE, XTYPE, YSTYLE, and
 YTYPE keywords has no effect: these parameters
 are always set to 0,1,0, and 1, respectively.

 August 1998 - Plots are now drawn properly when !p.multi is
 different from 0. Added BAR_OFFSET keyword.

 windt@bell-labs.com

 May 2011:
 Changed scaling to go from 32 to !d.table_size-33
 Added noaxis and noscale keywords

 May 2013:
 Added NLEVELS keyword, passed to CONTOUR

 davidwindgt@gmail.com

(See ./cont_image.pro)

CONT_IMAGE2

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 CONT_IMAGE2

 PURPOSE:

 Display an image and overlayer the contours from a second image.

 CALLING SEQUENCE:

 CONT_IMAGE2, IMAGE1, IMAGE2, X, Y

 INPUTS:

 IMAGE1 = Image to display.

 IMAGE2 = Image from which contours are drawn.

 KEYWORD PARAMETERS:

 WINDOW_SCALE = set to scale the window size to the image size,
 otherwise the image size is scaled to the window size.
 Ignored when outputting to devices with scalable pixels.

 ASPECT = set to retain image's aspect ratio. Assumes square
 pixels. If /WINDOW_SCALE is set, the aspect ratio is
 retained.

 INTERP = set to bi-linear interpolate if image is resampled.

 Plus IDL graphics keywords: XTITLE, YTITLE, SUBTITLE, TITLE

 PROCEDURE:

 If the device has scalable pixels then the image is written over the
 plot window.

 MODIFICATION HISTORY:

 Adapted (i.e. stolen) from IMAGE_CONT

 D. L. Windt, Bell Laboratories, June 1991.

 April 1994:
 Changed image scaling to go from 32 to !d.n_colors, so that
 TEK_COLOR can be called to use first 32 colors for other plotting.
 Added _EXTRA keyword.

 windt@bell-labs.com

(See ./cont_image2.pro)

CURVE_LABEL

[Previous Routine] [Next Routine] [List of Routines]
 NAME:
 CURVE_LABEL

 PURPOSE:

 Draw labels close to one or more (up to 30) curves that have
 been previously plotted.

 CALLING SEQUENCE:

 CURVE_LABEL,X,Y1,[Y2,Y3,Y4,Y5],LABELS=LABELS, $
 [COLOR=COLOR,XPOSITION=XPOSITION,YOFFSET=YOFFSET]

 INPUTS:
 X - xaxis vector (1D array)
 Y1 - 1st y axis vector to be labelled.

 OPTIONAL INPUTS:
 Y2 - 2nd y axis vector to be labelled.
 Y3 - 3rd y axis vector to be labelled.
 etc....

 KEYWORD PARAMETERS:

 LABELS - String array of labels. The size of the LABELS array
 must match the number of y variables passed. This
 keyword is required.

 XPOSITION - A scalar variable specifying where along the x
 axis the labels are to be drawn, in normal
 coordinates. Default = 0.25. Unless the
 NO_REPOSITION keyword is set, this might get
 changed if the procedure determines that the
 labels are too close together when drawing
 multiple labels. Setting XPOSITION to -1
 will inhibit drawing the curve label altogether.

 YOFFSET - A scalar specifying the distance in Y between the
 labels and the curves, in normal
 coordinates. Default = 0.01

 NO_REPOSITION - Set this to inhibit moving the label positions
 if the labels are too close together when
 drawing multiple labels.

 COLOR - Integer array of color indices for the labels.

 _EXTRA - The idl _EXTRA keyword, for additional graphics
 keywords to the XYOUTS procedure.

 PROCEDURE:

 All labels are lined up at one point along the xaxis. The
 procedure will try to find a position along the xaxis for
 which the labels are not too close to each other. If it fails
 at this, it will just stick the labels at x=0.25 (normal).

 EXAMPLE:

 To label a plot containing three curves, try something like
 this:

 plot,x,y1,/nodata
 oplot,x,y1,color=2
 oplot,x,y2,color=3
 oplot,x,y3,color=4
 curve_label,x,y1,y2,y3,labels=['Y1','Y2','Y3'],color=[2,3,4]

 MODIFICATION HISTORY:

 David L. Windt, Bell Labs, March, 1997.
 windt@bell-labs.com

 February, 1998 - Added the ability to inhibit labelling
 the curve by specifying a value of -1 for XPOSITION.

(See ./curve_label.pro)

CW_BGROUP_RXO

[Previous Routine] [Next Routine] [List of Routines]
 NAME:
 CW_BGROUP_RXO

 PURPOSE:
 CW_BGROUP_RXO is a compound widget that simplifies creating
 a base of buttons. It handles the details of creating the
 proper base (standard, exclusive, or non-exclusive) and filling
 in the desired buttons. Events for the individual buttons are
 handled transparently, and a CW_BGROUP_RXO event returned. This
 event can return any one of the following:
 - The Index of the button within the base.
 - The widget ID of the button.
 - The name of the button.
 - An arbitrary value taken from an array of User values.

 CATEGORY:
 Compound widgets.

 CALLING SEQUENCE:
 Widget = CW_BGROUP_RXO(Parent, Names)

 To get or set the value of a CW_BGROUP_RXO, use the GET_VALUE and
 SET_VALUE keywords to WIDGET_CONTROL. The value of a CW_BGROUP_RXO
 is:

 Type Value

 normal None
 exclusive Index of currently set button

 non-exclusive Vector indicating the position
 of each button (1-set, 0-unset)

 INPUTS:
 Parent: The ID of the parent widget.
 Names: A string array, containing one string per button,
 giving the name of each button.

 KEYWORD PARAMETERS:

 BUTTON_UVALUE: An array of user values to be associated with
 each button and returned in the event structure.
 COLUMN: Buttons will be arranged in the number of columns
 specified by this keyword.
 EVENT_FUNCT: The name of an optional user-supplied event function
 for buttons. This function is called with the return
 value structure whenever a button is pressed, and
 follows the conventions for user-written event
 functions.
 EXCLUSIVE: Buttons will be placed in an exclusive base, with
 only one button allowed to be selected at a time.
 FONT: The name of the font to be used for the button
 titles. If this keyword is not specified, the default
 font is used.
 FRAME: Specifies the width of the frame to be drawn around
 the base.
 GRID: Buttons will be arranged on a uniform grid.
 IDS: A named variable into which the button IDs will be
 stored, as a longword vector.
 LABEL_LEFT: Creates a text label to the left of the buttons.
 LABEL_TOP: Creates a text label above the buttons.
 MAP: If set, the base will be mapped when the widget
 is realized (the default).
 NONEXCLUSIVE: Buttons will be placed in an non-exclusive base.
 The buttons will be independent.
 NO_RELEASE: If set, button release events will not be returned.
 RETURN_ID: If set, the VALUE field of returned events will be
 the widget ID of the button.
 RETURN_INDEX: If set, the VALUE field of returned events will be
 the zero-based index of the button within the base.
 THIS IS THE DEFAULT.
 RETURN_NAME: If set, the VALUE field of returned events will be
 the name of the button within the base.
 ROW: Buttons will be arranged in the number of rows
 specified by this keyword.
 SCROLL: If set, the base will include scroll bars to allow
 viewing a large base through a smaller viewport.
 SET_VALUE: The initial value of the buttons. This is equivalent
 to the later statement:

 WIDGET_CONTROL, widget, set_value=value

 SPACE: The space, in pixels, to be left around the edges
 of a row or column major base. This keyword is
 ignored if EXCLUSIVE or NONEXCLUSIVE are specified.

 UVALUE: The user value to be associated with the widget.
 UNAME: The user name to be associated with the widget.
 XOFFSET: The X offset of the widget relative to its parent.
 XPAD: The horizontal space, in pixels, between children
 of a row or column major base. Ignored if EXCLUSIVE
 or NONEXCLUSIVE are specified.
 XSIZE: The width of the base.
 X_SCROLL_SIZE: The width of the viewport if SCROLL is specified.
 YOFFSET: The Y offset of the widget relative to its parent.
 YPAD: The vertical space, in pixels, between children of
 a row or column major base. Ignored if EXCLUSIVE
 or NONEXCLUSIVE are specified.
 YSIZE: The height of the base.
 Y_SCROLL_SIZE: The height of the viewport if SCROLL is specified.

 OUTPUTS:
 The ID of the created widget is returned.

 SIDE EFFECTS:
 This widget generates event structures with the following definition:

 event = { ID:0L, TOP:0L, HANDLER:0L, SELECT:0, VALUE:0 }

 The SELECT field is passed through from the button event. VALUE is
 either the INDEX, ID, NAME, or BUTTON_UVALUE of the button,
 depending on how the widget was created.

 RESTRICTIONS:
 Only buttons with textual names are handled by this widget.
 Bitmaps are not understood.

 MODIFICATION HISTORY:
 15 June 1992, AB
 7 April 1993, AB, Removed state caching.
 6 Oct. 1994, KDB, Font keyword is not applied to the label.
 10 FEB 1995, DJC fixed bad bug in event procedure, getting
 id of stash widget.
 11 April 1995, AB Removed Motif special cases.
 Feb 2004 DLW, Added GRID keyword

 May 2013 - Renamed CW_BGROUP_RXO, DLW, davidwindt@gmail.com

(See ./cw_bgroup_rxo.pro)

CW_CURVE_LABEL

[Previous Routine] [Next Routine] [List of Routines]
 NAME:
 CW_CURVE_LABEL

 PURPOSE:

 A compound widget used to select the position for a curve
 label; this widget is intended to be used in conjunction with
 the CURVE_LABEL procedure in this directory, in that this
 widget lets the user select a value from a slider from 0 to
 one, corresponding to the XPOSITION keyword in CURVE_LABEL.

 CATEGORY:

 Compound widgets.

 CALLING SEQUENCE:

 Result = CW_CURVE_LABEL(PARENT)

 INPUTS:

 PARENT - The ID of the parent widget.

 KEYWORD PARAMETERS:

 UVALUE - Supplies the user value for the widget.

 VALUE - Initial value for the widget: a floating point between
 0 and 1, corresponding to the XPOSITION keyword in
 CURVE_LABEL.

 TITLE - A title for the widget.

 FRAME - Set to draw a frame around the widget; ignored if
 PARENT is present.

 FORMAT - Format string for CW_FSLIDER (default is F5.3)

 FONT - Fonts to use for labels and buttons.

 DONE - Set this to add a Done button, in addition to the
 standard Apply button.

 YPAD, SPACE - keywords to widget_base

 OUTPUTS:

 The ID of the created widget is returned.

 PROCEDURE/EXAMPLE:

 A slider widget is created in which the user can select a
 position value. By pressing the "Apply" button, an event is
 returned, allowing the calling procedure to redraw the
 curve label if desired.

 This widget generates an event when the user presses the
 Apply button or the Done button, if present. The EVENT.TAG
 keyword will return either "APPLY" or "DONE" accordingly.

 MODIFICATION HISTORY:

 David L. Windt, Bell Labs, April 1997
 windt@bell-labs.com

 July 2003: Added YPAD, SPACE keywords

(See ./cw_curve_label.pro)

CW_DRAWSIZE

[Previous Routine] [Next Routine] [List of Routines]
 NAME:
 CW_DRAWSIZE

 PURPOSE:

 A compound widget used to change the size of an existing
 draw widget. The widget contains fields for the X and Y
 draw size (in pixels), an Apply button, and optionally a
 Done button.

 CATEGORY:

 Compound widgets.

 CALLING SEQUENCE:

 Result = CW_DRAWSIZE(PARENT,DRAW_WIDGET)

 INPUTS:

 PARENT - The ID of the parent widget.

 DRAW_WIDGET - The id of the draw widget being resized.

 KEYWORD PARAMETERS:

 UVALUE - Supplies the user value for the widget.

 FRAME - set to draw a frame around the widget; ignored if
 PARENT is present.

 ROW - set to place the two window size fields (x,y) in a row.

 COLUMN - set to place the two window size fields (x,y) in a column.

 FONT - fonts to use for labels and buttons.

 DONE - set this to add a Done button, in addition to the standard
 Apply button.

 NO_RETURN - The default behavior is that the user must press
 <return> after entering new values. Set this
 keyword so that an event is returned even if the
 user just changes a value and then moves the
 cursor outside of the text entry area.

 OUTPUTS:

 The ID of the created widget is returned.

 PROCEDURE/EXAMPLE:

 A widget is created in which the user can specify the X and Y
 draw widget size in pixels. By pressing the "Apply" button,
 the draw widget is resized, and an event is returned, allowing
 the calling procedure to repaint the window if desired.

 This widget generates an event when the user presses the
 Apply button or the Done button, if present. The EVENT.TAG
 keyword will return either "APPLY" or "DONE" accordingly.

 MODIFICATION HISTORY:

 David L. Windt, Bell Labs, March 1997
 windt@bell-labs.com

 DLW, June 1997, Added NO_RETURN keyword.

 DLW, Sep 1997, Fixed bug that caused initial values of X and Y
 pixel sizes to be displayed as floating point values rather
 than integers.

(See ./cw_drawsize.pro)

CW_FIELD_RXO

[Previous Routine] [Next Routine] [List of Routines]
 NAME:
 CW_FIELD_RXO

 PURPOSE:
 This widget cluster function manages a data entry field widget.
 The field consists of a label and a text widget. CW_FIELD's can
 be string fields, integer fields or floating-point fields. The
 default is an editable string field.

 CATEGORY:
 Widget Clusters.

 CALLING SEQUENCE:
 Result = CW_FIELD_RXO(Parent)

 INPUTS:
 Parent: The widget ID of the widget to be the field's parent.

 KEYWORD PARAMETERS:
 TITLE: A string containing the text to be used as the label for the
 field. The default is "Input Field:".

 VALUE: The initial value in the text widget. This value is
 automatically converted to the type set by the STRING,
 INTEGER, and FLOATING keywords described below.

 UVALUE: A user value to assign to the field cluster. This value
 can be of any type.

 UNAME: A user supplied string name to be stored in the
 widget's user name field.

 FRAME: The width, in pixels, of a frame to be drawn around the
 entire field cluster. The default is no frame.

RETURN_EVENTS: Set this keyword to make cluster return an event when a
 <CR> is pressed in a text field. The default is
 not to return events. Note that the value of the text field
 is always returned when the WIDGET_CONTROL, field, GET_VALUE=X
 command is used.

 ALL_EVENTS: Like RETURN_EVENTS but return an event whenever the
 contents of a text field have changed.

 COLUMN: Set this keyword to center the label above the text field.
 The default is to position the label to the left of the text
 field.

 ROW: Set this keyword to position the label to the left of the text
 field. This is the default.

 XSIZE: An explicit horizontal size (in characters) for the text input
 area. The default is to let the window manager size the
 widget. Using the XSIZE keyword is not recommended.

 YSIZE: An explicit vertical size (in lines) for the text input
 area. The default is 1.

 STRING: Set this keyword to have the field accept only string values.
 Numbers entered in the field are converted to their string
 equivalents. This is the default.

 FLOATING: Set this keyword to have the field accept only floating-point
 values. Any number or string entered is converted to its
 floating-point equivalent.

 INTEGER: Set this keyword to have the field accept only integer values.
 Any number or string entered is converted to its integer
 equivalent (using FIX). For example, if 12.5 is entered in
 this type of field, it is converted to 12.

 LONG: Set this keyword to have the field accept only long integer
 values. Any number or string entered is converted to its
 long integer equivalent (using LONG).

 FONT: A string containing the name of the X Windows font to use
 for the TITLE of the field.

 FIELDFONT: A string containing the name of the X Windows font to use
 for the TEXT part of the field.

 NOEDIT: Normally, the value in the text field can be edited. Set this
 keyword to make the field non-editable.

 NO_RETURN: The default behavior is that the user must press
 <return> after entering new values. Set this
 keyword so that an event is returned even if the
 user just changes a value and then moves the
 cursor outside of the text entry area.

 TEXT_ID: The widget id of the text widget.

 UNITS: A string to be placed after the text entry box.

 RIGHT_ALIGN: Set this keyword for the field text to be right-aligned
 within the field.

 RESOURCE_NAME: The X windows system RESOURCE_NAME keyword (as in the
 WIDGET_TEXT routine), which only applies to the text widget.

 SPACE: Keyword to widget_base.

 XPAD: Keyword to widget_base.

 YPAD: Keyword to widget_base.

 FORMAT: Valid format code for numerical field display. e.g., FORMAT='(F4.1)'

 OUTPUTS:
 This function returns the widget ID of the newly-created cluster.

 COMMON BLOCKS:
 None.

 PROCEDURE:
 Create the widgets, set up the appropriate event handlers, and return
 the widget ID of the newly-created cluster.

 EXAMPLE:
 The code below creates a main base with a field cluster attached
 to it. The cluster accepts string input, has the title "Name:", and
 has a frame around it:

 base = WIDGET_BASE()
 field = CW_FIELD_RXO(base, TITLE="Name:", /FRAME)
 WIDGET_CONTROL, base, /REALIZE

 MODIFICATION HISTORY:

 Written by: Keith R. Crosley June 1992
 KRC, January 1993 -- Added support for LONG
 integers.
 AB, 7 April 1993, Removed state caching.
 JWG, August 1993, Completely rewritten to make
 use of improved TEXT widget functionality
 ACY, 25 March, 1994, fix usage of FRAME keyword
 KDB, May 1994, Initial value =0 would result
 in a null text field. Fixed
 keyword check.
 CT, RSI, March 2001: Pass keywords directly into WIDGET_BASE,
 without assigning default values, since the defaults are
 handled by WIDGET_BASE. Avoids assigning defaults if user passes
 in undefined variables.
 CT, RSI, July 2001: Fix bug in previous mod. If user passes in a
 numeric VALUE but forgets to set the /FLOAT, we still need
 to convert to a string before passing onto WIDGET_TEXT.

 David L. Windt, Columbia Univ., April 2003

 Modified CW_FIELD.PRO (IDL 5.6 version) to include NO_RETURN,
 TEXT_ID, UNITS, RESOURCE_NAME, RIGHT_ALIGN, SPACE, XPAD and YPAD
 keywords, and implemented workaround to deal with widget bug when
 using the NO_RETURN keyword on some platforms.

 May 2013 - Renamed CWFIELD_RXO, DLW, davidwindt@gmail.com

(See ./cw_field_rxo.pro)

CW_FSLIDER_RXO

[Previous Routine] [Next Routine] [List of Routines]
 NAME:
 CW_FSLIDER_RXO

 PURPOSE:
 The standard slider provided by the WIDGET_SLIDER() function is
 integer only. This compound widget provides a floating point
 slider.

 CATEGORY:
 Compound widgets.

 CALLING SEQUENCE:
 widget = CW_FSLIDER_RXO(Parent)

 INPUTS:
 Parent: The ID of the parent widget.

 KEYWORD PARAMETERS:
 DRAG: Set this keyword to zero if events should only

 be generated when the mouse is released. If it is
 non-zero, events will be generated continuously
 when the slider is adjusted. Note: On slow systems,
 /DRAG performance can be inadequate. The default
 is DRAG=0.
 EDIT: Set this keyword to make the slider label be
 editable. The default is EDIT=0.
 EVENT_FUNC: The name of an optional user-supplied event function
 for events. This function is called with the return
 value structure whenever the slider value is changed, and
 follows the conventions for user-written event
 functions.
 FORMAT: Provides the format in which the slider value is
 displayed. This should be a format as accepted by
 the STRING procedure. The default is FORMAT='(G13.6)'
 FRAME: Set this keyword to have a frame drawn around the
 widget. The default is FRAME=0.
 MAXIMUM: The maximum value of the slider. The default is
 MAXIMUM=100.
 MINIMUM: The minimum value of the slider. The default is
 MINIMUM=0.
 SCROLL Sets the SCROLL keyword to the WIDGET_SLIDER underlying
 this compound widget. Unlike WIDGET_SLIDER, the
 value given to SCROLL is taken in the floating units
 established by MAXIMUM and MINIMUM, and not in pixels.
 SUPPRESS_VALUE: If true, the current slider value is not displayed.
 The default is SUPPRESS_VALUE=0.
 TITLE: The title of slider. (The default is no title.)
 UVALUE: The user value for the widget.
 UNAME: The user name for the widget.
 VALUE: The initial value of the slider
 VERTICAL: If set, the slider will be oriented vertically.
 The default is horizontal.
 XSIZE: For horizontal sliders, sets the length.
 YSIZE: For vertical sliders, sets the height.
 COMPACT: For horizontal sliders, the label is placed inline
 with the value

 OUTPUTS:
 The ID of the created widget is returned.

 SIDE EFFECTS:
 This widget generates event structures containing a field
 named value when its selection thumb is moved. This is a
 floating point value.

 PROCEDURE:
 WIDGET_CONTROL, id, SET_VALUE=value can be used to change the
 current value displayed by the widget. Optionally, the
 value supplied to the SET_VALUE keyword can be a three
 element vector consisting of [value, minimum, maximum]
 in order to change the minimum and maximum values as
 well as the slider value itself.

 WIDGET_CONTROL, id, GET_VALUE=var can be used to obtain the current
 value displayed by the widget. The maximum and minimum
 values of the slider can also be obtained by calling the

 FSLIDER_GET_VALUE function directly (rather than the standard
 usage through the WIDGET_CONTROL interface) with the optional
 keyword MINMAX:
 sliderVals = FSLIDER_GET_VALUE(id, /MINMAX)
 When called directly with the MINMAX keyword, the return
 value of FSLIDER_GET_VALUE is a three element vector
 containing [value, minimum, maximum].

 MODIFICATION HISTORY:
 April 2, 1992, SMR and AB
 Based on the RGB code from XPALETTE.PRO, but extended to
 support color systems other than RGB.
 5 January 1993, Mark Rivers, Brookhaven National Labs
 Added EDIT keyword.
 7 April 1993, AB, Removed state caching.
 28 July 1993, ACY, set_value: check labelid before setting text.
 3 October 1995, AB, Added SCROLL keyword.
 15 July 1998, ACY, Added ability to set and get minimum and maximum.
 24 July 2000, KDB, Fixed scroll keyword modification.
 March 2001, CT, RSI: Add double precision. Store value internally,
 separate from either scrollbar value or text label value.

 May 2011, D. Windt
 Changed title layout

 May 2013 - Renamed CW_FSLIDER_RXO, DLW, davidwindt@gmail.com

(See ./cw_fslider_rxo.pro)

CW_LEGEND_RXO

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 CW_LEGEND_RXO

 PURPOSE:

 A compound widget used to set values for the POSITION, NOBOX,
 and BOXFILL keywords to the LEGEND_RXO procedure.

 CATEGORY:

 Compound widgets.

 CALLING SEQUENCE:

 Result = CW_LEGEND_RXO(PARENT,LABEL)

 INPUTS:

 PARENT - The ID of the parent widget.

 LABEL - a label to be drawn to the left (or top, for /column)
 of the widget.

 OPTIONAL KEYWORD PARAMETERS:

 ADD_LABEL_CURVE_OPTION - set to add "Label Curves" as an
 additional, last option in the list
 of legend positions. (Return value
 for Label Curves is 13.)

 UVALUE - Supplies the user value for the widget.

 VALUE - an array of initial values:
 [POSITION, NOBOX, BOXFILL]

 FRAME - set to draw a frame around the widget.

 FONT - font keyword for labels etc.

 XPAD, YPAD, SPACE - keywords to widget_base

 OUTPUTS:

 The ID of the created widget is returned.

 COMMON BLOCKS:

 CW_PLOTSTYLE: private common block containing color bitmaps
 for 'buttons' and menus, and arrays of valid values for thick,
 psym and symsize.

 RESTRICTIONS:

 Uses the cgImage command in place of the tv command to display
 images correctly on all devices. cgImage is part of the Coyote
 Graphics System at www.idlcoyote.com.

 PROCEDURE/EXAMPLE:

 MODIFICATION HISTORY:

 David L. Windt, Reflective X-ray Optics, May 2013
 davidwindt@gmail.com.

 -

(See ./cw_legend_rxo.pro)

CW_PLOTAXES

[Previous Routine] [Next Routine] [List of Routines]
 NAME:
 CW_PLOTAXES

 PURPOSE:

 A compound widget used to change the type, range and style
 (bit 0) values of one or more plot axis structure variable. A
 CW_PLOTAXIS (single axis) widget is created for each element
 of the LABELS input parameter. The widget also includes an
 Apply button, and (optionally) a Done button.

 CATEGORY:

 Compound widgets.

 CALLING SEQUENCE:

 Result = CW_PLOTAXES(PARENT,LABELS)

 INPUTS:

 PARENT - The ID of the parent widget.

 LABELS - A string array of labels to be drawn to the left (or
 top) of each of the CW_PLOTAXIS widgets.

 OPTIONAL KEYWORD PARAMETERS:

 UVALUE - Supplies the user value for the widget.

 FRAME - Set to draw a frame around the widget.

 VALUE - An (n,4) array of initial values, where
 n = n_elements(LABELS), and each row has
 the form VALUE(i,*)=[type,min,max,style]

 FONT - Font keyword for labels etc.

 ROW - Set to create a row of column-oriented CW_PLOTAXIS widgets.

 COLUMN - Set to create a column of row-oriented CW_PLOTAXIS
 widgets. (default)

 DONE - Set this to add a Done button, in addition to the standard
 Apply button.

 AXIS_IDS - An array of widget id's for the individual
 CW_PLOTAXIS widgets.

 X_SCROLL_SIZE, Y_SCROLL_SIZE - if these values are non-zero,
 then the base widget which
 holds the CW_PLOTAXIS widgets

 will include scroll bars.

 NO_RETURN - The default behavior is that the user must press
 <return> after entering new values. Set this
 keyword so that new values are accepted even if
 the user just changes a value and then moves the
 cursor outside of the text entry area.

 XPAD, YPAD, SPACE - keywords to widget_base

 OUTPUTS:

 The ID of the created widget is returned.

 PROCEDURE/EXAMPLE:

 The idea is that this cw would be used in a widget intended
 to allow the user to interactively adjust the settings for a
 plot. For instance, you might have a menu item such as Plot
 Options->Scaling, which would create a popup widget
 containing a CW_PLOTAXES subwidget for the X and Y plot
 variables. When the user makes changes to the Type, Range,
 and Style values, and then presses the Apply button, the
 popup widget event handler would re-draw the plot
 accordingly.

 This widget generates an event when the user presses the
 Apply button or the Done button, if present. The EVENT.TAG
 keyword will return either "APPLY" or "DONE" accordingly.

 Example:

 axes=CW_PLOTAXES(BASE,['X','Y'],/DONE, $
 VALUE=TRANSPOSE([[FLTARR(4)],[FLTARR(4)]]))

 MODIFICATION HISTORY:

 David L. Windt, Bell Labs, March 1997
 windt@bell-labs.com

 DLW, June 1997, Added NO_RETURN keyword.

 July 2003: Added YPAD, SPACE keywords

 January 2004: Added GRID keywords

(See ./cw_plotaxes.pro)

CW_PLOTAXIS

[Previous Routine] [Next Routine] [List of Routines]

 NAME:

 CW_PLOTAXIS

 PURPOSE:

 A compound widget used to change the type, range and style
 (bit 0 only) values of plot axis structure variable.

 CATEGORY:

 Compound widgets.

 CALLING SEQUENCE:

 Result = CW_PLOTAXIS(PARENT,LABEL)

 INPUTS:

 PARENT - The ID of the parent widget.

 LABEL - a label to be drawn to the left of the widget.

 OPTIONAL KEYWORD PARAMETERS:

 UVALUE - Supplies the user value for the widget.

 FRAME - set to draw a frame around the widget.

 VALUE - a 4-element array of the form [type,min,max,style].
 type and min,max correspond to the !axis.type and
 !axis.range variables, and style is bit 0 of
 !axis.style.

 FONT - font keyword for labels etc.

 ROW - set to orient the subwidgets in a row (default.)

 COLUMN - set to orient the subwidgets in a column.

 NO_RETURN - The default behavior is that the user must press
 <return> after entering new values. Set this
 keyword so that new values are accepted even if
 the user just changes a value and then moves the
 cursor outside of the text entry area.

 XPAD, YPAD, SPACE - keywords to widget_base

 GRID - Set this to also add widgets to set the grid (i.e.,
 ticklen) and gridstyle values.

 NOGRID - Set this to draw the grid widgets but never map
 them. Useful when aligning multiple cw_plotaxis
 widgets.

 OUTPUTS:

 The ID of the created widget is returned.

 COMMON BLOCKS:

 CW_PLOTSTYLE: private common block containing color bitmaps
 for 'buttons' and menus, and arrays of valid values for thick,
 psym and symsize.

 RESTRICTIONS:

 Uses the cgImage command in place of the tv command to display
 images correctly on all devices. cgImage is part of the Coyote
 Graphics System at www.idlcoyote.com.

 PROCEDURE/EXAMPLE:

 The idea is that one or more instances of this cw would be
 used in a widget intended to allow the user to interactively
 adjust the settings for a plot. For instance, you might have
 a menu item such as Plot Options->Scaling, which would create
 a popup widget containing CW_PLOTAXIS subwidgets for the X and
 Y plot variables. When the user makes changes to the Type,
 Range, and Style values, the popup widget event handler would
 re-draw the plot accordingly.

 The widget returns events when any of it's children generate
 events. The returned event has the form
 {CW_PLOTAXIS_EVENT,ID:id,TOP:top,HANDLER:handler,TAG:tag}
 where TAG indicates which child widget generated the event:
 possible values for EVENT.TAG are TYPE, MIN, MAX, and STYLE.
 If GRID is set, then GRID and GRIDSTYLE tags are possible as
 well.

 MODIFICATION HISTORY:

 David L. Windt, Bell Labs, March 1997
 windt@bell-labs.com

 DLW, June 1997, Added NO_RETURN keyword.

 DLW, November 1997, Text fields for Range values are now
 updated when the user makes a change; the specified values are
 converted to floating point.

 January 2004: Added XPAD, YPAD, SPACE keywords; Changed widget
 types. Added GRID keyword. Changed to double precision.

 May 2013: Added color bitmaps for gridstyle options.

(See ./cw_plotaxis.pro)

CW_PLOTLABEL

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 CW_PLOTLABEL

 PURPOSE:

 A compound widget used to select the position for a plot label
 or legend. This widget is intended to be used in conjunction
 with the PLOT_TEXT or LEGEND procedures in this directory, in
 that this widget lets the user select one of 13 pre-defined
 positions corresponding to the POSITION keyword in PLOT_TEXT
 and LEGEND.

 CATEGORY:

 Compound widgets.

 CALLING SEQUENCE:

 Result = CW_PLOTLABEL(PARENT)

 INPUTS:

 PARENT - The ID of the parent widget.

 KEYWORD PARAMETERS:

 UVALUE - Supplies the user value for the widget.

 VALUE - initial value for the widget: an integer between 0 and
 12, corresponding to the POSITION keyword in plot_text
 or legend.

 TITLE - a title for the widget.

 FRAME - set to draw a frame around the widget; ignored if
 PARENT is present.

 FONT - fonts to use for labels and buttons.

 DONE - set this to add a Done button, in addition to the standard
 Apply button.

 NO_BELOW - set this to inhibit drawing the three buttons that
 correspond to label positions below the plot, i.e.,
 position values of 1, 2 and 3.

 YPAD, SPACE - keywords to widget_base

 OUTPUTS:

 The ID of the created widget is returned.

 PROCEDURE/EXAMPLE:

 A widget is created in which the user can select one of 13
 position values. By pressing the "Apply" button, an event
 is returned, allowing the calling procedure to redraw the
 plot label or legend if desired.

 This widget generates an event when the user presses the
 Apply button or the Done button, if present. The EVENT.TAG
 keyword will return either "APPLY" or "DONE" accordingly.

 MODIFICATION HISTORY:

 David L. Windt, Bell Labs, April 1997
 windt@bell-labs.com

 July 2003: Added YPAD, SPACE keywords

(See ./cw_plotlabel.pro)

CW_PLOTSTYLE

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 CW_PLOTSTYLE

 PURPOSE:

 A compound widget used to set values for the graphics keywords
 COLOR, LINESTYLE, THICK, PSYM, and SYMSIZE.

 CATEGORY:

 Compound widgets.

 CALLING SEQUENCE:

 Result = CW_PLOTSTYLE(PARENT,LABEL)

 INPUTS:

 PARENT - The ID of the parent widget.

 LABEL - a label to be drawn to the left (or top, for /column)
 of the widget.

 OPTIONAL KEYWORD PARAMETERS:

 UVALUE - Supplies the user value for the widget.

 VALUE - an array of initial values:
 [COLOR,LINESTYLE,THICK,PSYM,SYMSIZE]

 FRAME - set to draw a frame around the widget.

 FONT - font keyword for labels etc.

 ROW - set to orient the subwidgets in a row (default.)

 COLUMN - set to orient the subwidgets in a column.

 NO_PSYM - set to omit the PSYM and SYMSIZE widgets. If NO_SYM
 is set, then PSYM=0 and SYMSIZE=0 will be returned
 when using WIDGET_CONTROL,GET_VALUE; PSYM and
 SYMSIZE are ignored when using
 WIDGET_CONTROL,SET_VALUE

 XPAD, YPAD, SPACE - keywords to widget_base

 INIT_ONLY - set to create the 24-bit bitmaps and value arrays
 that are stored in the private CW_PLOTSTYLE common
 block listed below.

 OUTPUTS:

 The ID of the created widget is returned.

 COMMON BLOCKS:

 CW_PLOTSTYLE: private common block containing color bitmaps
 for 'buttons' and menus, and arrays of valid values for thick,
 psym and symsize.

 RESTRICTIONS:

 Uses the cgImage command in place of the tv command to display
 images correctly on all devices. cgImage is part of the Coyote
 Graphics System at www.idlcoyote.com.

 PROCEDURE/EXAMPLE:

 The idea is that one or more instances of this cw would be
 used in a widget intended to allow the user to interactively
 adjust the settings for a plot. For instance, you might have
 a menu item such as Plot Options->Styles, which would create a
 popup widget containing CW_PLOTSTYLE subwidgets for each of
 the variables being plotted. When the user makes changes to
 the Color, Linestyle, Thick, Psym, and Symsize values, the
 popup widget event handler would re-draw the plot accordingly.

 The user is presented with pulldown menus displaying:

 - 32 color choices corresponding to the 1st 32 color table
 entries.

 - 6 linestyle choices (linestyle=0 to 5)

 - 9 thickness choices (thick=1 to 9)

 - 35 psym choices, corresponding to the 18 symbols obtained
 using the SYM function with and without lines. Note that
 the value of psym returned by this widget is intended
 therefore to be used with the SYM function.

 - 8 symsize choices (symsize=0.25 to 2.00, in 0.25 increments)

 The widget returns events when any of it's children generate
 events. The returned event has the form
 {CW_PLOTSTYLE_EVENT,ID:id,TOP:top,HANDLER:handler,TAG:tag}
 where TAG indicates which child widget generated the event:
 Possible values for EVENT.TAG are COLOR, LINESTYLE, THICK
 PSYM, and SYSMSIZE.

 MODIFICATION HISTORY:

 David L. Windt, Bell Labs, March 1997
 windt@bell-labs.com

 January 2004: Added XPAD, YPAD, SPACE keywords, and added draw
 widgets to display results.

 May 2013: Re-written to use 24-bit color bitmap buttons and
 pull-down menus in place of draw and droplist widgets. No
 longer reliant on using TEK_COLOR; load whatever colors you
 like in the first 32 color indices of the color table.

 DLW, RXO, davidwindt@gmail.com.

 -

(See ./cw_plotstyle.pro)

CW_PLOTSTYLES

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 CW_PLOTSTYLES

 PURPOSE:

 A compound widget used to set values for the graphics keywords
 COLOR, LINESTYLE, THICK, PSYM, and SYMSIZE, for several plot
 variables. A CW_PLOTSTYLE (single variable) widget is created
 for each element of the LABELS input parameter. The widget
 also includes an Apply button, and (optionally) a Done button.

 CATEGORY:

 Compound widgets.

 CALLING SEQUENCE:

 Result = CW_PLOTSTYLES(PARENT,LABEL)

 INPUTS:

 PARENT - The ID of the parent widget.

 LABELS - a string array of labels to be drawn to the left
 (or top) of each of the CW_PLOTSTYLE widgets.

 OPTIONAL KEYWORD PARAMETERS:

 UVALUE - Supplies the user value for the widget.

 VALUE - an (n,5) array of initial values, where
 n = n_elements(LABELS), and each row has
 the form VALUE(i,*)=[color,linestyle,thick,psym,symsize]

 FRAME - set to draw a frame around the widget.

 FONT - font keyword for labels etc.

 ROW - set to create a row of column-oriented CW_PLOTSTYLE widgets.

 COLUMN - set to create a column of row-oriented CW_PLOTSTYLE
 widgets. (default)

 DONE - set this to add a Done button, in addition to the standard
 Apply button.

 STYLE_IDS - an array of widget id's for the individual
 CW_PLOTSTYLE widgets.

 X_SCROLL_SIZE, Y_SCROLL_SIZE - if these values are non-zero,
 then the base widget which
 holds the CW_PLOTSTYLE widgets
 will include scroll bars.

 XPAD, YPAD, SPACE - keywords to widget_base

 OUTPUTS:

 The ID of the created widget is returned.

 PROCEDURE/EXAMPLE:

 The idea is that this compound widget would be used in a
 widget intended to allow the user to interactively adjust
 the style settings for several variables contained in a
 plot. For instance, you might have a menu item such as Plot
 Options->Styles, which would create a popup widget

 containing a CW_PLOTSTYLES subwidget, allowing the user to
 affect each of the variables in the plot. When the user
 makes changes to the Color, Linestyle, Thick, Psym, and
 Symsize values, the popup widget event handler would re-draw
 the plot accordingly.

 This widget generates an event when the user presses the
 Apply button or the Done button, if present. The EVENT.TAG
 keyword will return either "APPLY" or "DONE" accordingly.

 Example:

 style=CW_PLOTSTYLE(BASE,['A','B'],/DONE, $
 VALUE=TRANSPOSE([[FLTARR(5)],[FLTARR(5)]]))

 MODIFICATION HISTORY:

 David L. Windt, Bell Labs, March 1997
 windt@bell-labs.com

 July 2003: Added XPAD, YPAD, SPACE keywords

(See ./cw_plotstyles.pro)

CW_PLOTTITLE_CHAR

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 CW_PLOTTITLE_CHAR

 PURPOSE:

 A compound widget used to set values for the graphics keywords
 CHARSIZE, SUBTITLE, and TITLE. The widget contains fields for
 these parameters, an Apply button, and (optionally) a Done
 button.

 CATEGORY:

 Compound widgets.

 CALLING SEQUENCE:

 Result = CW_PLOTTITLE_CHAR(PARENT)

 INPUTS:

 PARENT - The ID of the parent widget.

 OPTIONAL KEYWORD PARAMETERS:

 UVALUE - Supplies the user value for the widget.

 FRAME - set to draw a frame around the widget.

 VALUE - a structure, containing initial values for
 the charsize, subtitle and title fields, of
 the form {charsize:_float_, subtitle: _string_,
 title:_string_}

 FONT - font keyword for labels etc.

 DONE - set this to add a Done button, in addition to the standard
 Apply button.

 IDS - widget ids of the title, subtitle, and charsize cw_field_rxo
 widgets, and the apply button widget.

 NO_RETURN - The default behavior is that the user must press
 <return> after entering new values. Set this
 keyword so that new values are accepted even if
 the user just changes a value and then moves the
 cursor outside of the text entry area.

 YPAD, SPACE - keywords to widget_base

 OUTPUTS:

 The ID of the created widget is returned.

 PROCEDURE/EXAMPLE:

 The idea is that this cw would be used in a widget intended
 to allow the user to interactively adjust the settings for a
 plot. For instance, you might have a menu item such as Plot
 Options->Titles/Charsize, which would create a popup widget
 containing a CW_PLOTTITLE_CHAR subwidget. When the user
 makes changes to the CW_PLOTTITLE_CHAR fields, and then
 presses the Apply button, the popup widget event handler
 would re-draw the plot accordingly.

 This widget generates an event when the user presses the
 Apply button or the Done button, if present. The EVENT.TAG
 keyword will return either "APPLY" or "DONE" accordingly.

 Example:

 title_char=CW_PLOTTITLE_CHAR(BASE,/DONE, $
 VALUE={CHARSIZE:!P.CHARSIZE,SUBTITLE:!P.SUBTITLE,
 TITLE:!P.TITLE}

 MODIFICATION HISTORY:

 David L. Windt, Bell Labs, March 1997
 windt@bell-labs.com

 DLW, June 1997, Added NO_RETURN keyword.

 July 2003: Added YPAD, SPACE keywords

(See ./cw_plottitle_char.pro)

CW_VECTOR

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 CW_VECTOR

 PURPOSE:

 A compound widget used to get input necessary to create a
 "vector", in the spirit of the VECTOR function in this
 directory, i.e, get input for the MIN, MAX, and PTS values.
 The widget also lets the user specify the increment between
 points, and whether the point spacing is linear or
 logarithmic.

 CATEGORY:

 compound widgets.

 CALLING SEQUENCE:

 Result = CW_VECTOR(PARENT)

 INPUTS:

 PARENT - the id of the parent widget.

 OPTIONAL KEYWORD PARAMETERS:

 UVALUE - Supplies the user value for the widget.

 FRAME - Set to draw a frame around the widget.

 FONT - Font keyword for labels etc.

 TITLE - A string used to label the widget

 XSIZE - An explicit horizontal size (in characters) for the
 min, max and increment input areas. The default is to
 let the window manager size the widget.

 NXSIZE - An explicit horizontal size (in characters) for the
 pts field area. The default is to let the window
 manager size the widget.

 YSIZE - An explicit vertical size (in lines) for the text input

 areas. The default is 1.

 VALUE - A structure used to set the initial value of the
 widget, containing the following tags:

 min, max, n and log - the parameters used to specify a
 vector (see vector.pro)

 format - a valid format command string used to format
 the min, max, and increment values. a null
 string will result in default floating-point
 formatting.

 nformat - a valid format command string to format the
 pts field. a null string will result in
 default integer formatting.

 units - a string used to label the vector units. for
 example, if the CW_VECTOR widget is being used
 to get input to create a vector of lengths in
 feet, then set value.units='feet'

 uunits - a flag to indicate whether or not to actually
 update the units label.

 The same value structure is used with WIDGET_CONTROL
 to set the value of a CW_VECTOR, as in
 WIDGET_CONTROL,WIDGET,SET_VALUE=VALUE

 When using the GET_VALUE keyword with WIDGET_CONTROL,
 however, the returned value is a structure with only
 four tags: {min,max,pts,log}

 MINRANGE, MAXRANGE - These keywords define the range of
 acceptable values for the min and max
 fields. If not set, any values for min
 and max are allowed; otherwise, (min >
 MINRANGE) < MAXRANGE, and (max > MINRANGE)
 < MAXRANGE. None, one or both of these
 keywords can be specified.

 MINN - The minimum allowable value for n. default is 1.

 NO_RETURN - The default behavior is that the user must press
 <return> after entering new values. Set this
 keyword so that an event is returned even if the
 user just changes a value and then moves the
 cursor outside of the text entry area.

 SPACE - Keyword to all widget_base's used to create this
 compound widget.

 XPAD, YPAD - keyword to widget_base

 OUTPUTS:

 The id of the created widget is returned.

 PROCEDURE:

 Entering a value in the pts, min or max fields will set the
 increment field. Entering a value in the increment field will
 set the points field, and possibly the max field if the
 increment doesn't divide evenly into the range specified by min
 and max.

 EXAMPLE:

 Create a CW_VECTOR to get input to create a vector of lengths in
 [feet]:

 base=WIDGET_BASE()
 length_widget=CW_VECTOR(BASE,VALUE={MIN:0.,MAX:10.,N:11,LOG:0, $
 UNITS:'feet', $
 FORMAT:'(F10.2)',
 NFORMAT:'(I4)',
 UUNITS:1}
 TITLE='LENGTHS')

 Later, get the widget values and create the length vector:

 WIDGET_CONTROL,length_widget,GET_VALUE=value
 lengths=VECTOR(value.min,value.max,value.n,log=value.log)

 MODIFICATION HISTORY:

 David L. Windt, Bell Labs, March 1997
 windt@bell-labs.com

 DLW, June 1997, Added NO_RETURN keyword.

 DLW, November 1997, Removed TRACKING keyword; corrected bug
 that caused improper updates when NO_RETURN was set and the
 user toggled between linear and logarithmic step sizes.

 DLW, June 2003,
 Implemented workaround to deal with widget bug when using the
 NO_RETURN keyword on some platforms. Added SPACE keyword.

 windt@astro.columbia.edu

 February 2004: Added XPAD, YPAD, SPACE keywords

(See ./cw_vector.pro)

DGTZ_IMAGE

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 DGTZ_IMAGE

 PURPOSE:

 A widget application to interactively measure distances in an
 image, either between two points, two horizontal lines, or two
 vertical lines.

 CATEGORY:

 Image analysis

 CALLING SEQUENCE:

 DGTZ_IMAGE,IMAGE

 INPUTS:

 IMAGE = 2-D array containing image.

 OUTPUTS:

 The measured distances are listed on the widget, and
 can also be saved to a text file (using MORE.)

 KEYWORD PARAMETERS:

 UNITS - String specifying units. Default is 'units'.

 COMMON BLOCKS:

 dgtz_image, internal to this program.

 MODIFICATION HISTORY:

 David L. Windt, Bell Laboratories, May 1997
 windt@bell-labs.com

 Jul 1997: Corrected problem with widget labels

(See ./dgtz_image.pro)

DGTZ_PLOT

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 DGTZ_PLOT

 PURPOSE:

 A widget application used to extract (X,Y) values from an
 image of plot. For example, you can use this program to
 extract data from a published plot that you've scanned and
 converted to an image array.

 CALLING SEQUENCE:

 DGTZ_PLOT,IMAGE,XRANGE,YRANGE

 INPUTS:

 IMAGE - 2D array containing the plot image.

 XRANGE - 2-element array specifying data range of X axis on
 plot image.

 YRANGE - 2-element array specifying data range of Y axis on
 plot image.

 KEYWORD PARAMETERS:

 XTYPE - set if plot image has log x axis.

 YTYPE - set if plot image has log x axis.

 SXMAX - Visible size of draw widget along x direction, in pixels.
 Default=512.

 SYMAX - Visible size of draw widget along y direction, in pixels.
 Default=512.

 OUTPUTS:

 The digitized X,Y pairs are listed on a widget. You can
 also save these data to a file (using MORE.)

 COMMON BLOCKS:

 DGTZ_PLOT internal to this procedure.

 PROCEDURE:

 The image of the plot is displayed on a widget, and the user
 can digitize points which are converted to X,Y values. The
 first step,however, is generally to calibrate the X and Y
 axes; the endpoints of the specified axis are digitized,
 after pressing the Calibrate X Axis or Calibrate Y Axis
 button.

 MODIFICATION HISTORY:

 David L. Windt, Bell Laboratories, May, 1997

 September, 1998 - Addex SXMAX and SYMAX keywords.

 windt@bell-labs.com

(See ./dgtz_plot.pro)

DIALOG

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 DIALOG

 PURPOSE:

 A popup widget dialog box to get user input. Like
 WIDGET_MESSAGE, which is better in some cases, but this widget
 also includes fields and lists.

 CATEGORY:

 Widgets.

 CALLING SEQUENCE:

 Result = DIALOG([TEXT])

 OPTIONAL INPUTS:

 TEXT - The label seen by the user.

 KEYWORD PARAMETERS:

 There are 6 types of dialogs, each with unique behavior. With
 each default dialog type are associated buttons; these buttons can
 be overridden with the BUTTONS keyword, except in the case of the
 LIST and FIELD dialogs.

 One of the following six keywords MUST be set:

 ERROR - Display an error message; default BUTTONS =
 ['Abort','Continue']

 WARNING - Display a warning message. default BUTTONS = ['OK']

 INFO - Display an informational message;
 default BUTTONS = ['Cancel','OK']

 QUESTION - Ask a question. default BUTTONS =
 ['Cancel','No','Yes']

 LIST - Get a selection from a list of choices. default
 BUTTONS = ['Cancel','OK'] Must specify CHOICES = string

 array of list choices.

 Set the RETURN_INDEX keyword to cause the returned
 value to be the zero-based index of the selected
 list item.

 FILTER can be set to allow the user to filter the list
 of choices. When FILTER is set, the CHOICE_TYPES keyword
 must also be supplied: CHOICE_TYPES = string array of
 names, same length as the CHOICE array, that indicates
 the type for each element of choice.

 FILTER example:

 FILTER=1

 CHOICES=['Red','Blue','Green','One','Two','Three']

CHOICE_TYPES=['Colors','Colors','Colors','Numbers','Numbers','Numbers'].

 When the user click the "Filter" button that will be
 displayed, ; only Colors or Numbers will be listed,
 depending on ; which type is selected from the
 displayed droplist of choice types.

 FIELD - Get user input, using CW_FIELD. default BUTTONS =
 ['Cancel','OK']. FLOAT, INTEGER, LONG, and STRING
 keywords apply here, as does the VALUE keyword to set
 an initial value. Furthermore, the TEXT input
 variable can be specified as a two-element array, in
 which case the 2nd element will appear AFTER the
 FIELD.

 XSIZE - X-Size of FIELD

 GROUP - Group leader keyword.

 TITLE - title of popup widget.

 OUTPUTS:

 In the case of LIST or FIELD dialogs, this function returns
 the selected list element or the user input, respectively.
 Otherwise, this function returns the name of the pressed
 button.

 EXAMPLE:

 1. Create a QUESTION DIALOG widget.

 D = DIALOG(/QUESTION,'Do you want to continue?')

 2. Get the user to enter a number.

 D = DIALOG(/FLOAT,VALUE=3.14159,'Enter a new value for pi.')

 3. Get the user to choose from a list of options.

 D = DIALOG(/LIST,CHOICES=['Snoop','Doggy','Dog'])

 MODIFICATION HISTORY:

 David L. Windt, Bell Labs, March 1997

 May 1997 - Added GROUP keyword, and modified use of MODAL
 keyword to work with changes in IDL V5.0

 Feb 2013 - Added 2-element TEXT parameter and XSIZE keyword for FIELD
dialogs

 May 2013 - Added FILTER and CHOICE_TYPES keywords; removed
 common block.

 davidwindt@gmail.com

(See ./dialog.pro)

DISPLAYED_TABLE_CELLS

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 DISPLAYED_TABLE_CELLS

 PURPOSE:

 This function returns a four-element vector

 CALLING SEQUENCE:

 Result = DISPLAYED_TABLE_CELLS(Table)

 INPUTS:

 Table - Widget id of the widget_table.

 OUTPUTS:

 EXAMPLE:

 MODIFICATION HISTORY:

 Daryl Atencio, Research Systems, Oct 2003

(See ./displayed_table_cells.pro)

DISPLAY_FONT

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 DISPLAY_FONT

 PURPOSE:

 Display the font sets listed in the IDL User's Guide.

 CALLING SEQUENCE:

 DISPLAY_FONT[,FONT_NUMBER,HARDWARE=HARDWARE]

 OPTIONAL INPUT PARAMETERS:

 FONT_NUMBER - The font index. If not supplied, the user is
 prompted for input.

 KEYWORD PARAMETERS:

 HARDWARE - set to use the hardware fonts (i.e. PostScript for
 !d.name='PS') set; otherwise Hershey sets are used.

 MODIFICATION HISTORY:

 D. L. Windt, Bell Laboratories, Sept. 1991
 windt@bell-labs.com

(See ./display_font.pro)

DLIB

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 DLIB

 PURPOSE:

 A cheesy alias to DOC_LIBRARY, with a name that's easier to
 type.

 CATEGORY:

 Cheesy aliases.

 MODIFICATION HISTORY:

 D. L. Windt, Bell Labs, April 1990.
 windt@bell-labs.com

(See ./dlib.pro)

EDGE_FIND

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 EDGE_FIND

 PURPOSE:

 Return the center of the rising or falling edge of the
 supplied data array.

 CALLING SEQUENCE:

 Result = EDGE_FIND(X,Y[,/RISING][,/FALLING])

 INPUTS:

 X, Y - 1D data arrays.

 OUTPUTS:

 Result = The X value corresponding to the center of the rising
 or falling edge of the Y data.

 KEYWORD PARAMETERS:

 RISING - Set this keyword to find the rising edge. This is the
default.

 FALLING - Set this keyword to find the falling edge.

 EXAMPLE:

 Make some noisy data:

 x=VECTOR(-8.,8.,100)
 y=ATAN(x)+.1*RANDOMN(seed,100)

 Determine the rising edge:

 x_edge=EDGE_FIND(y)

 PROCEDURE:

 Pretty cheesy: locate the first maximum (rising edge) or
 minimum (falling edge) of the derivative of Y. There's almost
 certainly a better way...

 MODIFICATION HISTORY:

 David L. Windt, December 2003

 windt@astro.columbia.edu

(See ./edge_find.pro)

ELECTRON_MFP

[Previous Routine] [Next Routine] [List of Routines]
 NAME:
 ELECTRON_MFP

 PURPOSE:

 This function returns the elastic mean-free-path for electrons
 of energy E, in a material having density N, and atomic number Z.

 CALLING SEQUENCE:

 Result = ELECTRON_MFP(Z,A,RHO,E)

 INPUTS:

 Z = Atomic number

 A = Atomic weight (g/mole)

 RHO = Density (g/cm3)

 E = electron energy in keV

 OUTPUTS:

 This function returns the elastic mean-free-path, in angstroms.

 EXAMPLE:

 The elastic mean-free-path of tungsten (Z=74, Rho=19.35) at an
 electron energy of 100 keV = ELECTRON_MFP(74,183.85,19.35,100.)

 MODIFICATION HISTORY:

 Written by D. L. Windt, Bell Labs, June 1994
 windt@bell-labs.com

(See ./electron_mfp.pro)

EPLOT

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 EPLOT

 PURPOSE:

 Plot x vs y, with vertical error bars on y.

 CALLING SEQUENCE:

 EPLOT,Y,SIGY
 EPLOT,X,Y,SIGY
 EPLOT,Y,SIGY_UP,SIGY_DOWN
 EPLOT,X,Y,SIGY_UP,SIGY_DOWN

 INPUTS:

 X, Y - 1-D arrays

 SIGY - Uncertainty in Y, i.e. Y+/-SIGY

 SIGY_UP, SIGY_DOWN - +/- uncertainties in Y, i.e.,
 Y +SIGY_UP -SIGY_DOWN

 KEYWORD PARAMETERS:

 BARLINESTYLE = Linestyle for error bars.

 plus all valid IDL plot keywords. Only the COLOR,
 THICK, NOCLIP, and T3D keywords apply to the error
 bars.

 MODIFICATION HISTORY:

 D. L. Windt, Bell Laboratories, November 1989
 Replaced specific plot/oplot keywords with _EXTRA,
 April, 1997

 windt@bell-labs.com

(See ./eplot.pro)

EROM

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 EROM

 PURPOSE:

 Read columns of data from a text file.

 This program can be used to read data written by the MORE
 program.

 The file to be read must be such that if the data are
 space-separated, then all variables are numeric; String
 variables are allowed only if the data are separated by tabs,
 colons, etc.

 The file may contain any number of comment lines - which MUST
 begin with a semicolon, and MUST be positioned before all data
 lines.

 CALLING SEQUENCE:

 EROM,V0[,V1,V2,...V9]

 or

 EROM,V=V

 KEYWORD PARAMETERS:

 V - Set this keyword to a named variable that will be returned as
 an array of structures holding the data and the variable names
 specified in the last comment line. See RESTRICTIONS below
 for more details.

 FILE - String specifying the name of a file; if not supplied, the
 user is queried.

 SKIP - The number of lines at the beginning of the file that
 should be skipped.

 TAB - Specify /TAB for tab-separated data. (The default is space-
 separated data.) It is only necessary to specify this
 keyword if the file contains any string data columns.

 SEPARATOR - A string specifying the character separating the data
 columns.

 COMMENT - Set this keyword to a named variable that will be
 returned as a string array holding the comment lines
 included in the file.

 GROUP - GROUP_LEADER keyword passed to DIALOG_PICKFILE if FILE is
 not specified.

 CANCEL - Set this keyword to a named variable that will be
 returned to indicate if the user pressed the CANCEL
 button when prompted for a file to read, if the FILE
 keyword is not set.

 OUTPUTS:

 If the V keyword is not used, then the user must specify the
 correct number of Vi (V0, V1, etc.) output parameters. ;
 There must be as many Vi's specified in the call to EROM as
 there are columns of data. The V's are double-precision
 arrays, unless either the TAB or SEPARATOR keyword is
 specified in which case they are all string arrays.

 RESTRICTIONS:

 If EROM is called with the V keyword, then the columns of data
 contained in the file are returned as double-precision fields
 in the returned V structure variable. Use of the V keyword
 requires that the data file contain at least one comment line,
 and the last comment line MUST include the names of the data
 variables separated by the "|" character.

 For example, to read a file using the V keyword containing
 three columns of 10 rows of data, then the last comment line
 in the file must look like this:

 ; First Variable Name | Second One | Another Variable Name

 Thus the V structure returned by EROM will have the following
 tag names:

 HELP,/STR,V

 V[0].VALUE DOUBLE Array[10]
 V[0].NAME STRING 'First Variable Name'
 V[1].VALUE DOUBLE Array[10]
 V[1].NAME STRING 'Second One'
 V[2].VALUE DOUBLE Array[10]
 V[2].NAME STRING 'Another Variable Name'

 MODIFICATION HISTORY:

 David L. Windt, Bell Labs, March 1990

 January, 1997 - DLW
 Modified to ignore lines beginning with semicolons, and to
 accept data separated by tabs, etc.; Removed the notitle and
 comment keyword; included pickfile to prompt for filenames
 when not specified.

 June, 1997 - DLW
 Returned numeric variables are now double-precision instead
 of floating-point.

 windt@bell-labs.com

 DLW, May 2003

 Added V, COMMENTS, GROUP and CANCEL keywords.
 Replaced call to PICKFILE with call to DIALOG_PICKFILE

 davidwindt@gmail.com

(See ./erom.pro)

ERRORF_FIT

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 ERRORF_FIT

 PURPOSE:

 fit y=f(x) where:
 f(x) = a0*errorf((x-a1)/a2))+a3+x*a4

 CALLING SEQUENCE:

 YFIT = ERRORF_FIT(X,Y,A)

 INPUTS:

 X - independent variable, must be a vector.

 Y - dependent variable, must have the same number of points ;
 as x.

 A - initial values of adjustable parameters.

 OUTPUTS:

 YFIT = fitted function.

 MODIFICATION HISTORY:

 Adapted from GAUSSFIT

 D. L. Windt, Bell Laboratories, June 1990
 windt@bell-labs.com

(See ./errorf_fit.pro)

EXPO_FIT

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 EXPO_FIT

 PURPOSE:

 Fit y=f(x) where:
 F(x) = a0*exp(-abs(x-a1)/a2)+a3
 a0 = height of exp, a1 = center of peak, a2 = 1/e width,
 Estimate the parameters a0,a1,a2,a3 and then call curvefit.

 CALLING SEQUENCE:

 YFIT = EXPO_FIT(X,Y,A)

 INPUTS:

 X - independent variable, must be a vector.

 Y - dependent variable, must have the same number of points ;
 as x.

 OUTPUTS:

 YFIT - fitted function.

 OPTIONAL OUTPUT PARAMETERS:

 A - Fit coefficients. a four element vector as described
 above.

 MODIFICATION HISTORY:

 Adapted from GAUSSFIT

 D. L. Windt, Bell Laboratories, March, 1990
 windt@bell-labs.com

 27-Feb-2003: Initial value for a may now be specified.

(See ./expo_fit.pro)

FILE_DATE

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 FILE_DATE

 PURPOSE:

 Determine Unix file creation date.

 CALLING SEQUENCE:

 Result=FILE_DATE(FILE_NAME)

 INPUTS:

 FILE_NAME - A string specifying the name of the file

 OUTPUTS:

 Result - a string specifying the file creation date.

 RESTRICTIONS:

 Probably won't work the way you want. So sue me.

 MODIFICATION HISTORY:

 David L. Windt, Bell Labs, May 1997
 windt@bell-labs.com

(See ./file_date.pro)

FINDEX

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 FINDEX

 PURPOSE: Compute "floating point index" into a table using binary
 search. The resulting output may be used with INTERPOLATE.

 USEAGE: result = findex(u,v)

 INPUT:
 u a monitically increasing or decreasing 1-D grid
 v a scalor, or array of values

 OUTPUT:
 result Floating point index. Integer part of RESULT(i) gives
 the index into to U such that V(i) is between

 U(RESULT(i)) and U(RESULT(i)+1). The fractional part
 is the weighting factor

 V(i)-U(RESULT(i))

 U(RESULT(i)+1)-U(RESULT(i))

 DISCUSSION:
 This routine is used to expedite one dimensional
 interpolation on irregular 1-d grids. Using this routine
 with INTERPOLATE is much faster then IDL's INTERPOL
 procedure because it uses a binary instead of linear
 search algorithm. The speedup is even more dramatic when
 the same independent variable (V) and grid (U) are used
 for several dependent variable interpolations.

 EXAMPLE:

; In this example I found the FINDEX + INTERPOLATE combination
; to be about 60 times faster then INTERPOL.

 u=randomu(iseed,200000) & u=u(sort(u))
 v=randomu(iseed,10) & v=v(sort(v))
 y=randomu(iseed,200000) & y=y(sort(y))

 t=systime(1) & y1=interpolate(y,findex(u,v)) & print,systime(1)-t
 t=systime(1) & y2=interpol(y,u,v) & print,systime(1)-t
 print,f='(3(a,10f7.4/))','findex: ',y1,'interpol: ',y2,'diff: ',y1-y2

 AUTHOR: Paul Ricchiazzi 21 Feb 97
 Institute for Computational Earth System Science
 University of California, Santa Barbara
 paul@icess.ucsb.edu

 REVISIONS:

(See ./findex.pro)

FLOYD_SAMPLING

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 FLOYD_SAMPLING

 PURPOSE:

 Randomly choose a unique set of M integers out of a set of N
 integers ranging in value from 0 to N-1.

 This program uses a sampling algorithm invented by Robert Floyd.

 CALLING SEQUENCE:

 Result=FLOYD_SAMPLING(SEED,M,N)

 INPUTS:

 SEED = A variable or constant used by the call to RANDOMU to
 initialize the random sequence on input, and in which the
 state of the random number generator is saved on output. Keep
 in mind that the number sequences this function returns will
 not be random if called repeatedly SEED with undefined.

 M = number of integers to select randomly. M must be greater
 than or equal to 1.

 N = number of integers from which to select (i.e., ranging
 from 0 to N-1). N must be greater than or equal to 2, and
 must be greater than M.

 OUTPUTS:

 Result = M-element array of randomly selected integers.

 EXAMPLE:

 Result=FLOYD_SAMPLING(5,100)

 Result is a 5-element integer array containing possible values from 0
 to 99, with no duplicates. It might look like this:
Result=[81,3,24,71,60]

 MODIFICATION HISTORY:

 David L. Windt, RXO, April 2013
 davidwindt@gmail.com

(See ./floyd_sampling.pro)

FRACTAL_FIT

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 FRACTAL_FIT

 PURPOSE:

 Fit y=f(x) where:
 F(x) = a0/(x^a1) [+a2]

 Estimate the parameters a0,a1[,a2] and then call curvefit.

 CALLING SEQUENCE:

 YFIT = FRACTAL_FIT(X,Y,A,BACKGROUND=BACKGROUND)

 INPUTS:

 X = independent variable, must be a vector and MUST BE POSITIVE!

 Y = dependent variable, must have the same number of points as x.

 BACKGROUND = set to add a background term (a2).

 OUTPUTS:

 YFIT = fitted function.

 OPTIONAL OUTPUT PARAMETERS:

 A = coefficients. a two [three] element vector as described above.

 RESTRICTIONS:

 X must be positive.

 MODIFICATION HISTORY:

 D. L. Windt, Bell Laboratories, March, 1990
 windt@bell-labs.com

(See ./fractal_fit.pro)

FWHM

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 FWHM

 PURPOSE:

 Interactively measure the full-width-half-max of a region of a
 curve that has been previously plotted.

 CALLING SEQUENCE:

 RESULT=FWHM(XAXIS,YAXIS)

 INPUTS:

 XAXIS - The x axis variable which has been plotted.

 YAXIS - The y axis variable which has been plotted.

 OPTIONAL INPUT PARAMETERS:

 RANGE - Vector of subscripts, which refers to the range of X,Y
 values over which the FWHM is to be determined. If
 not supplied, then GET_ROI is used to interactively
 define the range. To use FWHM with a non-interactive
 graphics device, range MUST be supplied.

 KEYWORD PARAMETERS:

 CWHM - The center point of the peak, defined as the mid-point
 of the FWHM region.

 YZERO - The zero point level. If not specified, the zero point
 level is determined from the endpoints of the region
 of interest of the curve.

 YHM - The value at which the full-width is computed.
 Allowable range is 0. to 1. If not specified, .5 is
 used.

 INVERT - Set to get width of 'absorption line' rather than
 'emission line'.

 NOHIGHLIGHT - Set to inhibit highlighting the region of
 interest.

 H_COLOR - The color index for highlighting the region of
 interest. Default is 7 (Yellow.)

 H_THICK - The thickness for highlighting the region of
 interest.

 NOLABEL - Set to inhibit labelling the fwhm.

 L_HEADER - String specifying the label header. Default=''.

 L_COLOR - Color index for the label.

 L_FORMAT - Format string for label (eg. '(F4.2)').

 UNITS - String specifying units along x axis, used in label.

 CHARSIZE - Size of label text.

 PSYM - PSYM

 L_CWHM - Set to include CWHM value in label.

 OUTPUTS:

 Result - The full-with-half-max of the region of interest
 of the curve, in x-axis data units.

 OPTIONAL OUTPUT PARAMETERS:

 ROI - The subscripts of the digitized region of interest.

 FWHM_ROI - The subscripts of the region between the fwhm
 points and the max (min) of the function.

 LINE_PTS - A 4-element array containing the coordinates of
 the line drawn on the plot: [x0,x1,y0,y1]

 LABEL - The label for the plot.

 L_POS - A two element array containing the x,y coordinates
 of the label, in data coords.

 RESTRICTIONS:

 The data must be plotted prior to calling FWHM.

 PROCEDURE:

 The user is asked to digitize the endpoints of the region of
 interest with the mouse. The region is highlighted, and the
 fwhm is labelled.

 MODIFICATION HISTORY:

 D. L. Windt, Bell Laboratories, November 1989

 March 1998 - Removed MANUAL keyword.

 January 2004 - Now using local slopes to interpolate fwhm
 points, for greater precision.

 - Added CWHM keyword.

 windt@astro.columbia.edu

(See ./fwhm.pro)

GAUSSEXPO_FIT

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 GAUSSEXPO_FIT

 PURPOSE:

 Fit y=f(x) where:

 f(x) = a0*exp(-z^2/2)+a3*exp(-abs(x-a4)/a5)+a6 and z=(x-a1)/a2

 a0 = height of gaussian, a1 = center of gaussian, a2 = 1/e
 width of ; gaussian, a3 = height of exponential, a4 = center
 of exponential, ; a5 = 1/e width of exponential,
 a6=background.

 Estimate the parameters a0,a1,a2,a3,a4,a5,a6 and then call curvefit.

 CALLING SEQUENCE:

 YFIT = GAUSSEXPO_FIT(X,Y,A)

 INPUTS:

 X = independent variable, must be a vector.

 Y = dependent variable, must have the same number of points as x.

 OUTPUTS:

 YFIT = fitted function.

 OPTIONAL OUTPUT PARAMETERS:

 A = Fit coefficients. A six element vector as described above.

 MODIFICATION HISTORY:

 Adapted from GAUSSFIT

 D. L. Windt, Bell Laboratories, March, 1990
 windt@bell-labs.com

(See ./gaussexpo_fit.pro)

GAUSS_FIT

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 GAUSS_FIT

 PURPOSE:

 Fit y=f(x) where:
 f(x) = a0*exp(-z^2/2) + a3
 and z=(x-a1)/a2
 a0 = height of gaussian, a1 = center of gaussian, a2 = 1/e width,
 a3 = background.
 Estimate the parameters a0,a1,a2,a3 and then call CURFIT.

 CALLING SEQUENCE:

 YFIT = GAUSS_FIT(X,Y,A)

 INPUTS:

 X - independent variable, must be a vector.

 Y - dependent variable, must have the same number of points ;
 as x.

 OUTPUTS

 YFIT - fitted function.

 OPTIONAL OUTPUT PARAMETERS:

 A - Fit coefficients. a three element vector as described
 above.

 MODIFICATION HISTORY:

 Adapted from GAUSSFIT

 D. L. Windt, Bell Laboratories, March, 1990
 windt@bell-labs.com

(See ./gauss_fit.pro)

GET_PEAK

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 GET_PEAK

 PURPOSE:

 Interactively find the local maximum of a previously plotted
 curve, and indicate it on the plot.

 CALLING SEQUENCE:

 Result=GET_PEAK(XAXIS,YAXIS)

 INPUTS:

 XAXIS = the x axis variable which has been plotted.

 YAXIS = the y axis variable which has been plotted.

 KEYWORD PARAMETERS:

 COLOR - the color index for marking the local maximum.

 NOMARK - set to disable marking the location of the peak.

 NOHIGHLIGHT - set to disable highlighting the region of
 interest.

 H_COLOR - the color index for highlighting the region of
 interest. Default is 7 (Yellow).

 H_THICK- the thickness for highlighting the region ; of
 interest.

 PRINT - set to print the x,y values of the peak.

 OUTPUTS:

 Result = the array subscript of the local max.

 SIDE EFFECTS:

 TEK_COLOR is used to load in the tektronix colors.
 The region of interest of the curve is highlighted.
 A vertical line is drawn through the local maximum.

 PROCEDURE:

 The user is asked to digitize the endpoints of the region of
 interest with the mouse using GET_ROI.

 MODIFICATION HISTORY:

 D. L. Windt, Bell Laboratories, February 1990.

 windt@bell-labs.com

(See ./get_peak.pro)

GET_PT

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 GET_PT

 PURPOSE:

 Digitize a point on a previously plotted curve, and return
 the corresponding array element.

 CALLING SEQUENCE:

 Result = GET_PT(XAXIS,YAXIS,XPOINT,YPOINT)

 INPUTS:

 XAXIS - the x axis vector which was used to make the plot.

 YAXIS - the y axis vector which was used to make the plot.

 KEYWORD PARAMETERS:

 NOHIGHLIGHT - set to inhibit putting a red mark on the curve
 at the digitized point.

 MESSAGE - a string to print as the message to the user.
 Default = 'Digitize a point: '

 NOINIT - set to inhibit placing the cursor in the center of
 the plot window.

 OUTPUTS:

 Result - The array subscript of the digitized point.

 OPTIONAL OUTPUT PARAMETERS:

 XPOINT, YPOINT - the digitized points.

 SIDE EFFECTS:

 A mark is drawn on the plot at the digitized point.

 PROCEDURE:

 The user is asked to digitize a point on the curve using the
 mouse. The VALUE_TO_INDEX function is used to find the
 closest array element.

 MODIFICATION HISTORY:

 D. L. Windt, Bell Laboratories, November 1989
 Feb. 1991, Removed call to TEK_COLOR
 Mar. 1997, replaced index search code with call to
 VALUE_TO_INDEX function.

 windt@bell-labs.com

(See ./get_pt.pro)

GET_ROI

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 GET_ROI

 PURPOSE:

 Get a region-of-interest of a previously plotted curve.

 CALLING SEQUENCE:

 Result=GET_ROI(XAXIS,YAXIS)

 INPUTS:

 XAXIS = the x axis variable which has been plotted.

 YAXIS = the y axis variable which has been plotted.

 KEYWORD PARAMETERS:

 NOHIGHLIGHT - set to disable highlighting the region of
 interest.

 H_COLOR - the color index for highlighting the region of
 interest. Default is 7 (Yellow).

 H_THICK - the thickness for highlighting the region ; of
 interest.

 PSYM - PSYM.

 OUTPUTS:

 Result = the array of subscripts of the roi.

 SIDE EFFECTS:

 TEK_COLOR is used to load in the tektronix colors.
 The region of interest of the curve is highlighted.

 PROCEDURE:

 The user is asked to digitize the endpoints of the region of
 interest with the mouse using GET_PT. The region is
 highlighted (unless nohighlight is set.)

 MODIFICATION HISTORY:

 D. L. Windt, Bell Laboratories, November 1989

 windt@bell-labs.com

(See ./get_roi.pro)

GHOSTVIEW

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 GHOSTVIEW

 PURPOSE:

 Use the Unix ghostview program to view an IDL postscript file

 CALLING SEQUENCE:

 GHOSTVIEW [,FILE=FILE]

 KEYWORD PARAMETERS:

 FILE - the name of the file to view. Default is idl.ps

 RESTRICTIONS:

 Since the procedure spawns a "ghostview" process,
 such an executable must exist or it ain't goin' nowhere.

 PROCEDURE:

 If the current device is PS, the program will issue
 a DEVICE,/CLOSE command.

 It will then SPAWN,'ghostview file_name&'

 MODIFICATION HISTORY:

 David L. Windt, Bell Labs, March 1997
 windt@bell-labs.com

(See ./ghostview.pro)

GREEK

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 GREEK

 PURPOSE:

 This function returns the string needed to draw the specified
 greek character using either the vector graphics font no. 4,
 or PostScript font 9.

 If (!d.name eq 'PS') and (!p.font eq 0), then the PostScript
 font will be used. Otherwise, the vector font will be used.

 CALLING SEQUENCE:

 Result = GREEK(Name)

 INPUTS:

 Name - String specifying the greek character name. Valid
 inputs are:

 alpha, beta, gamma, delta, epsilon, zeta, eta, theta
 iota, kappa, lambda, mu, nu, xi, omicron, pi, rho,
 sigma, tau, upsilon, phi, chi, psi, omega

 Alpha, Beta, Gamma, Delta, Epsilon, Zeta, Eta, Theta
 Iota, Kappa, Lambda, Mu, Nu, Xi, Omicron, Pi, Rho,
 Sigma, Tau, Upsilon, Phi, Chi, Psi, Omega

 Although not greek, the following characters are also
 valid (but will only work with the 'default' font !3):

 angstrom, Angstrom, degrees, plus_minus

 KEYWORDS:

 FORCE_PS - Set to use PostScript font, regardless of the value
 of !d.name and !p.font.

 PLAIN - Set to just return Name in plain text.

 APPEND_FONT - Set to append the characters specifying a
 'default' font: !3. That is, if this keyword is
 set, then the command

 Result=GREEK(theta,/APPEND_FONT)

 will return the string

 '!9q!3' for PostScript and '!4h!3' for vector
 fonts.

 OUTPUTS:

 Result - The string containing the specified greek character.

 EXAMPLE:

 Result=GREEK(theta)

 In this case, Result='!9q' if !d.name is 'PS' and !p.font is
 0; otherwise, Result='!4h'

 MODIFICATION HISTORY:

 David L. Windt, Bell Labs, September 1998.
 windt@bell-labs.com

(See ./greek.pro)

KAISER_BESSEL

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 KAISER_BESSEL

 PURPOSE:

 Window function for Fourier Transform filtering.

 CATEGORY:

 Signal, image processing.

 CALLING SEQUENCE:

 Result = KAISER_BESSEL(N1) (for 1D)

 Result = KAISER_BESSEL(N1,N2) (for 2D)

 INPUTS:

 N1 - The number of columns of the result.

 N2 - The number of rows of the result.

 KEYWORD PARAMETERS:

 ALPHA - The value of Pi*Alpha is half of the time-bandwidth
 product. Default = 3.0

 OUTPUTS:

 Result(i) = BESELI(!pi*alpha*sqrt(1-((findgen(N)-N/2) / (N/2))^2),0) / $
 BESELI(!pi*alpha,0)

 MODIFICATION HISTORY:

 David L Windt, Bell Labs, August 1996
 May, 1997 - Added 2D option.
 windt@bell-labs.com

(See ./kaiser_bessel.pro)

LEGEND_RXO

[Previous Routine] [Next Routine] [List of Routines]
 NAME:
 LEGEND_RXO

 PURPOSE:

 Add to a plot a legend containing lines and plotting symbols,
 optionally enclosed in a box.

 CALLING SEQUENCE:

 LEGEND_RXO,LABELS

 INPUTS:
 LABELS - n-element string array of labels.

 KEYWORD PARAMETERS:

 POSITION - an integer, specifying the location of the legend box:

 0: no legend is drawn.
 1: below plot, left
 2: below plot, center
 3: below plot, right
 4: lower left
 5: lower center
 6: lower right
 7: middle left
 8: middle center
 9: middle right
 10: upper left
 11: upper center
 12: upper right

 if not specified, default position=10

 COLOR - n-element array of colors. default is !p.color

 LINESTYLE - n-element array of linestyles. if ommited, only
 symbols are plotted.

 THICK - n-element array of thicknesses. default is !p.thick

 PSYM - n-element array of psym values. if positive, only
 symbols are plotted.

 SYMSIZE - n-element array of symsize values. default is !p.symsize

 SYMBOLS - array of 'symbol' specifiers: each element of
 psym which is equal to 8 (user-defined symbol)
 must have a corresponding value for 'symbol' to be

 used by the procedure SYMBOLS.
 Examples: psym=[8,8,8,8],symbols=[1,2,20,30]
 psym=[1,2,8,8],symbols=[1,2]

 USE_SYM - Set this keyword to use the SYM function to
 generate plotting symbols. In this case the
 SYMBOLS keyword is not needed; just specify PSYM
 values to be passed to the SYM function. i.e.,
 PSYM=14,/USE_SYM will produce an filled rightfacing
triangle

 CHARSIZE - scalar specifiying the size of the text.

 TITLE - scalar string specifying legend title

 T_COLOR - scalar specifying the color index of the title.

 NOLINES - set to inhibit drawing lines and symbols; just draw
 labels in color.

 SYM_ONLY - set to inhibit drawing lines; just draw symbols.

 NOBOX - set to inhibit drawing a box around the legend

 LINEWIDTH - width in character units. default = 4.

 BOXPADX - padding in character units, between text and box in
 x. default=2.0
 BOXPADY - padding in character units, between text and box in
 y. default=0.5

 FONT - Set to an integer from 3 to 20, corresponding to the
 Hershey vector font sets, referring to the font used
 to display the text. If a font other than !3 is used
 in the text string, then FONT should be set
 accordingly. (Any font commands embedded in the text
 string are ignored.)

 BOXFUDGEX - A scaling factor, used to fudge the width of the
 box surrounding the text. Default=1.0.

 BOXCOLOR - set to the color index used to draw the box.
 Default is !P.COLOR.

 BOXFILL - set to the color index used to fill the box. Omit,
 or set to -1 for no fill. No effect if NOBOX=1.

 Plus all valid graphics keywords for xyouts and plots

 RESTRICTIONS:

 When specifying a position of 1,2 or 3, you'll need
 to (a) use the same charsize value for the plot and
 for the legend, and (b) draw the plot with an extra
 ymargin(0). i.e., set ymargin(0)=7+n_elements(text_array)

 MODIFICATION HISTORY:

 David L. Windt, Bell Labs, March 1997
 windt@bell-labs.com

 May 2011, dlw:

 Now using WIDTH keyword from XYOUTS to do an even better job of
 drawing the box.

 October, 1997, dlw:

 Now using the TEXT_WIDTH function, in order to do a somewhat
 better job of drawing the box around the text.

 NONPRINTER_SCALE keyword parameter is now obsolete.

 BOXFUDGEX keyword parameter added.

 January 2004 - Added USE_SYM keyword

 May 2013 - Added BOXCOLOR and BOXFILL, and renamed LEGEND_RXO,
 DLW, davidwindt@gmail.com

(See ./legend_rxo.pro)

LPRINT

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 LPRINT

 PURPOSE:

 Close an IDL graphics file and print it.

 CALLING SEQUENCE:

 LPRINT

 KEYWORD PARAMETERS:

 NORETURN - set this keyword to inhibit executing
 set_plot,getenv('IDL_DEVICE') followed by
 !p.font=-1

 FILE - the name of the file to print. Default is device
 dependent: idl.ps for PS, idl.hp for HP, and idl.pcl
 for PCL devices.

 PRINTER - set to the name of the printer to use. Default = lp

 COMMAND - set to the name of the printer command to
 use. Default = lpr.

 Note: the COMMAND, PRINTER, and FILE keywords are combined as
 follows:

 if COMMAND='lpr', then the program spawns the unix command
 "lpr -Pprinter file"

 if COMMAND='lp', then the program spawns the unix command
 "lp dprinter file"

 if COMMAND is anything else, the program simply ignores the
 printer and file keywords, and spawns the
 command as is.

 MODIFICATION HISTORY:

 D. L. Windt, Bell Laboratories, November 1989
 Added PRINTER keyword, June 1993.

 Added COMMAND keywrd, replaced RETURN with NORETURN keyword,
 and added code to execute !p.font=-1 unless
 NORETURN keyword is set. March, 1997.

 windt@bell-labs.com

(See ./lprint.pro)

LS

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 LS

 CATEGORY:

 Stupid little convenience routines.

 PURPOSE:

 List the contents of the current directory, like the Unix 'ls'
 command.

 CALLING SEQUENCE:

 LS[,NAME]

 NAME - An optional string specifying the names of the files to
 be listed. Wild cards are allowed. For example,
 ls,'*.pro' will list all files ending in .pro.

 MODIFICATION HISTORY:

 David L. Windt, Bell Labs, November 1989
 windt@bell-labs.com

 February, 1998 - Now works under Windows and MacOS, making use
 of FINDFILE. But the old DIR keyword is gone.

(See ./ls.pro)

MAKE_LATEX_TBL

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 MAKE_LATEX_TBL

 PURPOSE:

 Create a LaTeX format table.

 CALLING SEQUENCE:

 MAKE_LATEX_TBL,ARRAY,TFILE

 INPUTS:

 ARRAY - (n,m) array of data.

 TFILE - string specifying the name of the '.tex' file to create.

 KEYWORD PARAMETERS:

 COLUMNS - An n-element string specifying the LaTeX column
 format. For example, if array = (3,m), then an
 acceptable value for columns would be
 ['|l|','|c|','|c|'], which would left-justify the
 first column of data, and center the remaining two.

 FORMAT - an n-element string specifying the FORMAT used to
 PRINTF the data. This must conform to IDL FORMAT
 standards. If not set, the default the data are
 printed using the IDL free format.

 TITLE - a string specifying the title of the table.

 HEADINGS - an n-element string array containing the table

 headings.

 NOHLINES - set to inhibit printing \hline between rows of data.

 SIDE EFFECTS:

 The '.tex' file is created.

 RESTRICTIONS:

 The TITLE is printed with vertical lines on either ; side,
 regardless of how the COLUMNS parameter may be ; set. It is
 thus necessary to edit the file to remove the vertical line
 commands if desired.

 PROCEDURE:

 The data contained in ARRAY are printed to a file ; with the
 appropriate '&' and '\\' symbols necessary ; for use as in the
 LaTeX tabular environment. If ; COLUMNS is not set, the
 default is '|c|' which centers the data in columns, with
 vertical line separators.

 MODIFICATION HISTORY:

 David L. Windt, Bell Laboratories, December 1989.
 windt@bell-labs.com

(See ./make_latex_tbl.pro)

MK_BITARRAY

[Previous Routine] [Next Routine] [List of Routines]
 NAME:
 mk_bitarray
 PURPOSE:
 Create an array of 1's & 0's corresponding to input bits set
 (works for negative numbers, too, unlike similar routines)
 CATEGORY:
 Bits
 CALLING SEQUENCE:
 IDL> array= mk_bitarray(input)
 IDL> array= mk_bitarray(input, nbits=5)
 INPUTS:
 input = whatever; might be something like !X.STYLE
 KEYWORD PARAMETERS:
 NBITS=nbits - length of returned array (default to input type)
 PRINT - if set, will print bits in groups of fours.
 OUTPUTS:
 Byte array containing 1's and 0's out
 COMMON BLOCKS:
 NONE

 EXAMPLE:
 IDL> print,mk_bitarray(3, nbits=8)
 1 1 0 0 0 0 0 0
 IDL> dum = mk_bitarray(1025, /print)'
 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
 LIMITATION:
 Only works on a scalar.
 MODIFICATION HISTORY:
 05-Jun-00 default nbits to input type. add print keyword.
 30-Mar-99 Written by Bill Davis, PPPL

(See ./mk_bitarray.pro)

MK_NEW_PTRS

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 MK_NEW_PTRS

 PURPOSE:

 Make a copy of a pointer variable, or a structure variable
 containing pointer variables as tags, such that the
 de-referenced pointer values are copied, but new pointer heap
 variables are created in the copy of the original variable.

 CALLING SEQUENCE:

 Results=MK_NEW_PTRS(SOURCE)

 INPUTS:

 SOURCE = The source structure variable.

 EXAMPLE:

 IDL> a={n:ptr_new(/allocate_heap)}
 IDL> b=a
 IDL> help,a.n,b.n
 <Expression> POINTER = <PtrHeapVar1>
 <Expression> POINTER = <PtrHeapVar1>
 IDL> b=mk_new_ptrs(a)
 IDL> help,a.n,b.n
 <Expression> POINTER = <PtrHeapVar1>
 <Expression> POINTER = <PtrHeapVar2>

 PROCEDURE:

 SAVE and RESTORE to and from a temporary file are used to
 generate the new pointers. Ideally, there would be keyword to
 the STRUCT_ASSIGN procedure that would accomplish the same

 thing without having to use this workaround...but so far (IDL
 6.0) such a keyword does not exist.

 MODIFICATION HISTORY:

 David L. Windt, Columbia University, Oct-2003

 windt@astro.columbia.edu

(See ./mk_new_ptrs.pro)

MORE

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 MORE

 PURPOSE:

 Print one or more variables on the screen or to a file, using
 the MORE keyword to printf.

 CALLING SEQUENCE:

 MORE,v0[,v1,v2,...v19]

 INPUTS:

 V0,V1,...V19 - Any type of array variables; they must all be
 the same length.

 KEYWORD PARAMETERS:

 FILE - string specifying the name of an output file.

 INDEX - set to print the array indices in the first column.

 TITLE - string array of variable names.

 COMMENT - string array of comments

 TAB - set this keyword to create tab-separated data; this is
 useful when writing to a file if any of the variables are
 strings, in which case the data can be read using EROM,/TAB

 COMMA - set this keyword to create comma-separated data

 APPEND - If FILE is specified, the APPEND keyword caused data to
 be appended to the end of the file.

 SEPARATE_TITLES - Set this keyword to insert a "|" character

 between each variable name specified by the
 TITLE keyword.

 MODIFICATION HISTORY:

 David L. Windt, Bell Labs, March 1990

 Added comment keyword, August 1992

 March 1997 - Title and comment lines are now written with
 preceding semicolons. Fixed bug to correctly
 deal with string arrays. Added TAB keyword.
 Removed NOINDEX keyword. Added INDEX keyword.

 November 1997 - Removed Unix-specific stuff, so that it now
 works (somewhat) under Windows and MacOS.

 May 2003 - Added APPEND and SEPARATE_TITLES keyword.

 July 2007 - Changed loop counters to longword type.

 November 2008 - Added COMMA keyword.

 davidwindt@gmail.com

(See ./more.pro)

MPFIT

[Previous Routine] [Next Routine] [List of Routines]
 NAME:
 MPFIT

 AUTHOR:
 Craig B. Markwardt, NASA/GSFC Code 662, Greenbelt, MD 20770
 craigm@lheamail.gsfc.nasa.gov
 UPDATED VERSIONs can be found on my WEB PAGE:
 http://cow.physics.wisc.edu/~craigm/idl/idl.html

 PURPOSE:
 Perform Levenberg-Marquardt least-squares minimization (MINPACK-1)

 MAJOR TOPICS:
 Curve and Surface Fitting

 CALLING SEQUENCE:
 parms = MPFIT(MYFUNCT, start_parms, FUNCTARGS=fcnargs, NFEV=nfev,
 MAXITER=maxiter, ERRMSG=errmsg, NPRINT=nprint, QUIET=quiet,
 FTOL=ftol, XTOL=xtol, GTOL=gtol, NITER=niter,
 STATUS=status, ITERPROC=iterproc, ITERARGS=iterargs,
 COVAR=covar, PERROR=perror, BESTNORM=bestnorm,
 PARINFO=parinfo)

 DESCRIPTION:

 MPFIT uses the Levenberg-Marquardt technique to solve the
 least-squares problem. In its typical use, MPFIT will be used to
 fit a user-supplied function (the "model") to user-supplied data
 points (the "data") by adjusting a set of parameters. MPFIT is
 based upon MINPACK-1 (LMDIF.F) by More' and collaborators.

 For example, a researcher may think that a set of observed data
 points is best modelled with a Gaussian curve. A Gaussian curve is
 parameterized by its mean, standard deviation and normalization.
 MPFIT will, within certain constraints, find the set of parameters
 which best fits the data. The fit is "best" in the least-squares
 sense; that is, the sum of the weighted squared differences between
 the model and data is minimized.

 The Levenberg-Marquardt technique is a particular strategy for
 iteratively searching for the best fit. This particular
 implementation is drawn from MINPACK-1 (see NETLIB), and seems to
 be more robust than routines provided with IDL. This version
 allows upper and lower bounding constraints to be placed on each
 parameter, or the parameter can be held fixed.

 The IDL user-supplied function should return an array of weighted
 deviations between model and data. In a typical scientific problem
 the residuals should be weighted so that each deviate has a
 gaussian sigma of 1.0. If X represents values of the independent
 variable, Y represents a measurement for each value of X, and ERR
 represents the error in the measurements, then the deviates could
 be calculated as follows:

 DEVIATES = (Y - F(X)) / ERR

 where F is the function representing the model. You are
 recommended to use the convenience functions MPFITFUN and
 MPFITEXPR, which are driver functions that calculate the deviates
 for you. If ERR are the 1-sigma uncertainties in Y, then

 TOTAL(DEVIATES^2)

 will be the total chi-squared value. MPFIT will minimize the
 chi-square value. The values of X, Y and ERR are passed through
 MPFIT to the user-supplied function via the FUNCTARGS keyword.

 Simple constraints can be placed on parameter values by using the
 PARINFO keyword to MPFIT. See below for a description of this
 keyword.

 MPFIT does not perform more general optimization tasks. See TNMIN
 instead. MPFIT is customized, based on MINPACK-1, to the
 least-squares minimization problem.

 USER FUNCTION

 The user must define a function which returns the appropriate
 values as specified above. The function should return the weighted

 deviations between the model and the data. For applications which
 use finite-difference derivatives -- the default -- the user
 function should be declared in the following way:

 FUNCTION MYFUNCT, p, X=x, Y=y, ERR=err
 ; Parameter values are passed in "p"
 model = F(x, p)
 return, (y-model)/err
 END

 See below for applications with explicit derivatives.

 The keyword parameters X, Y, and ERR in the example above are
 suggestive but not required. Any parameters can be passed to
 MYFUNCT by using the FUNCTARGS keyword to MPFIT. Use MPFITFUN and
 MPFITEXPR if you need ideas on how to do that. The function *must*
 accept a parameter list, P.

 In general there are no restrictions on the number of dimensions in
 X, Y or ERR. However the deviates *must* be returned in a
 one-dimensional array, and must have the same type (float or
 double) as the input arrays.

 See below for error reporting mechanisms.

 CHECKING STATUS AND HANNDLING ERRORS

 Upon return, MPFIT will report the status of the fitting operation
 in the STATUS and ERRMSG keywords. The STATUS keyword will contain
 a numerical code which indicates the success or failure status.
 Generally speaking, any value 1 or greater indicates success, while
 a value of 0 or less indicates a possible failure. The ERRMSG
 keyword will contain a text string which should describe the error
 condition more fully.

 By default, MPFIT will trap fatal errors and report them to the
 caller gracefully. However, during the debugging process, it is
 often useful to halt execution where the error occurred. When you
 set the NOCATCH keyword, MPFIT will not do any special error
 trapping, and execution will stop whereever the error occurred.

 MPFIT does not explicitly change the !ERROR_STATE variable
 (although it may be changed implicitly if MPFIT calls MESSAGE). It
 is the caller's responsibility to call MESSAGE, /RESET to ensure
 that the error state is initialized before calling MPFIT.

 User functions may also indicate non-fatal error conditions using
 the ERROR_CODE common block variable, as described below under the
 MPFIT_ERROR common block definition (by setting ERROR_CODE to a
 number between -15 and -1). When the user function sets an error
 condition via ERROR_CODE, MPFIT will gracefully exit immediately
 and report this condition to the caller. The ERROR_CODE is
 returned in the STATUS keyword in that case.

 EXPLICIT DERIVATIVES

 In the search for the best-fit solution, MPFIT by default
 calculates derivatives numerically via a finite difference
 approximation. The user-supplied function need not calculate the
 derivatives explicitly. However, the user function *may* calculate
 the derivatives if desired, but only if the model function is
 declared with an additional position parameter, DP, as described
 below. If the user function does not accept this additional
 parameter, MPFIT will report an error. As a practical matter, it
 is often sufficient and even faster to allow MPFIT to calculate the
 derivatives numerically, but this option is available for users who
 wish more control over the fitting process.

 There are two ways to enable explicit derivatives. First, the user
 can set the keyword AUTODERIVATIVE=0, which is a global switch for
 all parameters. In this case, MPFIT will request explicit
 derivatives for every free parameter.

 Second, the user may request explicit derivatives for specifically
 selected parameters using the PARINFO.MPSIDE=3 (see "CONSTRAINING
 PARAMETER VALUES WITH THE PARINFO KEYWORD" below). In this
 strategy, the user picks and chooses which parameter derivatives
 are computed explicitly versus numerically. When PARINFO[i].MPSIDE
 EQ 3, then the ith parameter derivative is computed explicitly.

 The keyword setting AUTODERIVATIVE=0 always globally overrides the
 individual values of PARINFO.MPSIDE. Setting AUTODERIVATIVE=0 is
 equivalent to resetting PARINFO.MPSIDE=3 for all parameters.

 Even if the user requests explicit derivatives for some or all
 parameters, MPFIT will not always request explicit derivatives on
 every user function call.

 EXPLICIT DERIVATIVES - CALLING INTERFACE

 When AUTODERIVATIVE=0, the user function is responsible for
 calculating the derivatives of the *residuals* with respect to each
 parameter. The user function should be declared as follows:

 ;
 ; MYFUNCT - example user function
 ; P - input parameter values (N-element array)
 ; DP - upon input, an N-vector indicating which parameters
 ; to compute derivatives for;
 ; upon output, the user function must return
 ; an ARRAY(M,N) of derivatives in this keyword
 ; (keywords) - any other keywords specified by FUNCTARGS
 ; RETURNS - residual values
 ;
 FUNCTION MYFUNCT, p, dp, X=x, Y=y, ERR=err
 model = F(x, p) ;; Model function
 resid = (y - model)/err ;; Residual calculation (for example)

 if n_params() GT 1 then begin
 ; Create derivative and compute derivative array
 requested = dp ; Save original value of DP
 dp = make_array(n_elements(x), n_elements(p), value=x[0]*0)

 ; Compute derivative if requested by caller
 for i = 0, n_elements(p)-1 do if requested(i) NE 0 then $
 dp(*,i) = FGRAD(x, p, i) / err
 endif

 return, resid
 END

 where FGRAD(x, p, i) is a model function which computes the
 derivative of the model F(x,p) with respect to parameter P(i) at X.

 A quirk in the implementation leaves a stray negative sign in the
 definition of DP. The derivative of the *residual* should be
 "-FGRAD(x,p,i) / err" because of how the residual is defined
 ("resid = (data - model) / err"). **HOWEVER** because of the
 implementation quirk, MPFIT expects FGRAD(x,p,i)/err instead,
 i.e. the opposite sign of the gradient of RESID.

 Derivatives should be returned in the DP array. DP should be an
 ARRAY(m,n) array, where m is the number of data points and n is the
 number of parameters. -DP[i,j] is the derivative of the ith
 residual with respect to the jth parameter (note the minus sign
 due to the quirk described above).

 As noted above, MPFIT may not always request derivatives from the
 user function. In those cases, the parameter DP is not passed.
 Therefore functions can use N_PARAMS() to indicate whether they
 must compute the derivatives or not.

 The derivatives with respect to fixed parameters are ignored; zero
 is an appropriate value to insert for those derivatives. Upon
 input to the user function, DP is set to a vector with the same
 length as P, with a value of 1 for a parameter which is free, and a
 value of zero for a parameter which is fixed (and hence no
 derivative needs to be calculated). This input vector may be
 overwritten as needed. In the example above, the original DP
 vector is saved to a variable called REQUESTED, and used as a mask
 to calculate only those derivatives that are required.

 If the data is higher than one dimensional, then the *last*
 dimension should be the parameter dimension. Example: fitting a
 50x50 image, "dp" should be 50x50xNPAR.

 EXPLICIT DERIVATIVES - TESTING and DEBUGGING

 For reasonably complicated user functions, the calculation of
 explicit derivatives of the correct sign and magnitude can be
 difficult to get right. A simple sign error can cause MPFIT to be
 confused. MPFIT has a derivative debugging mode which will compute
 the derivatives *both* numerically and explicitly, and compare the
 results.

 It is expected that during production usage, derivative debugging
 should be disabled for all parameters.

 In order to enable derivative debugging mode, set the following

 PARINFO members for the ith parameter.
 PARINFO[i].MPSIDE = 3 ; Enable explicit derivatives
 PARINFO[i].MPDERIV_DEBUG = 1 ; Enable derivative debugging mode
 PARINFO[i].MPDERIV_RELTOL = ?? ; Relative tolerance for comparison
 PARINFO[i].MPDERIV_ABSTOL = ?? ; Absolute tolerance for comparison
 Note that these settings are maintained on a parameter-by-parameter
 basis using PARINFO, so the user can choose which parameters
 derivatives will be tested.

 When .MPDERIV_DEBUG is set, then MPFIT first computes the
 derivative explicitly by requesting them from the user function.
 Then, it computes the derivatives numerically via finite
 differencing, and compares the two values. If the difference
 exceeds a tolerance threshold, then the values are printed out to
 alert the user. The tolerance level threshold contains both a
 relative and an absolute component, and is expressed as,

 ABS(DERIV_U - DERIV_N) GE (ABSTOL + RELTOL*ABS(DERIV_U))

 where DERIV_U and DERIV_N are the derivatives computed explicitly
 and numerically, respectively. Appropriate values
 for most users will be:

 PARINFO[i].MPDERIV_RELTOL = 1d-3 ;; Suggested relative tolerance
 PARINFO[i].MPDERIV_ABSTOL = 1d-7 ;; Suggested absolute tolerance

 although these thresholds may have to be adjusted for a particular
 problem. When the threshold is exceeded, users can expect to see a
 tabular report like this one:

 FJAC DEBUG BEGIN
 # IPNT FUNC DERIV_U DERIV_N DIFF_ABS DIFF_REL
 FJAC PARM 2
 80 -0.7308 0.04233 0.04233 -5.543E-07 -1.309E-05
 99 1.370 0.01417 0.01417 -5.518E-07 -3.895E-05
 118 0.07187 -0.01400 -0.01400 -5.566E-07 3.977E-05
 137 1.844 -0.04216 -0.04216 -5.589E-07 1.326E-05
 FJAC DEBUG END

 The report will be bracketed by FJAC DEBUG BEGIN/END statements.
 Each parameter will be delimited by the statement FJAC PARM n,
 where n is the parameter number. The columns are,

 IPNT - data point number (0 ... M-1)
 FUNC - function value at that point
 DERIV_U - explicit derivative value at that point
 DERIV_N - numerical derivative estimate at that point
 DIFF_ABS - absolute difference = (DERIV_U - DERIV_N)
 DIFF_REL - relative difference = (DIFF_ABS)/(DERIV_U)

 When prints appear in this report, it is most important to check
 that the derivatives computed in two different ways have the same
 numerical sign and the same order of magnitude, since these are the
 most common programming mistakes.

 A line of this form may also appear

 # FJAC_MASK = 1

 This line indicates for which parameters explicit derivatives are
 expected. A list of all-1s indicates all explicit derivatives for
 all parameters are requested from the user function.

 CONSTRAINING PARAMETER VALUES WITH THE PARINFO KEYWORD

 The behavior of MPFIT can be modified with respect to each
 parameter to be fitted. A parameter value can be fixed; simple
 boundary constraints can be imposed; limitations on the parameter
 changes can be imposed; properties of the automatic derivative can
 be modified; and parameters can be tied to one another.

 These properties are governed by the PARINFO structure, which is
 passed as a keyword parameter to MPFIT.

 PARINFO should be an array of structures, one for each parameter.
 Each parameter is associated with one element of the array, in
 numerical order. The structure can have the following entries
 (none are required):

 .VALUE - the starting parameter value (but see the START_PARAMS
 parameter for more information).

 .FIXED - a boolean value, whether the parameter is to be held
 fixed or not. Fixed parameters are not varied by
 MPFIT, but are passed on to MYFUNCT for evaluation.

 .LIMITED - a two-element boolean array. If the first/second
 element is set, then the parameter is bounded on the
 lower/upper side. A parameter can be bounded on both
 sides. Both LIMITED and LIMITS must be given
 together.

 .LIMITS - a two-element float or double array. Gives the
 parameter limits on the lower and upper sides,
 respectively. Zero, one or two of these values can be
 set, depending on the values of LIMITED. Both LIMITED
 and LIMITS must be given together.

 .PARNAME - a string, giving the name of the parameter. The
 fitting code of MPFIT does not use this tag in any
 way. However, the default ITERPROC will print the
 parameter name if available.

 .STEP - the step size to be used in calculating the numerical
 derivatives. If set to zero, then the step size is
 computed automatically. Ignored when AUTODERIVATIVE=0.
 This value is superceded by the RELSTEP value.

 .RELSTEP - the *relative* step size to be used in calculating
 the numerical derivatives. This number is the
 fractional size of the step, compared to the
 parameter value. This value supercedes the STEP
 setting. If the parameter is zero, then a default

 step size is chosen.

 .MPSIDE - selector for type of derivative calculation. This
 field can take one of five possible values:

 0 - one-sided derivative computed automatically
 1 - one-sided derivative (f(x+h) - f(x))/h
 -1 - one-sided derivative (f(x) - f(x-h))/h
 2 - two-sided derivative (f(x+h) - f(x-h))/(2*h)
 3 - explicit derivative used for this parameter

 In the first four cases, the derivative is approximated
 numerically by finite difference, with step size
 H=STEP, where the STEP parameter is defined above. The
 last case, MPSIDE=3, indicates to allow the user
 function to compute the derivative explicitly (see
 section on "EXPLICIT DERIVATIVES"). AUTODERIVATIVE=0
 overrides this setting for all parameters, and is
 equivalent to MPSIDE=3 for all parameters. For
 MPSIDE=0, the "automatic" one-sided derivative method
 will chose a direction for the finite difference which
 does not violate any constraints. The other methods
 (MPSIDE=-1 or MPSIDE=1) do not perform this check. The
 two-sided method is in principle more precise, but
 requires twice as many function evaluations. Default:
 0.

 .MPDERIV_DEBUG - set this value to 1 to enable debugging of
 user-supplied explicit derivatives (see "TESTING and
 DEBUGGING" section above). In addition, the
 user must enable calculation of explicit derivatives by
 either setting AUTODERIVATIVE=0, or MPSIDE=3 for the
 desired parameters. When this option is enabled, a
 report may be printed to the console, depending on the
 MPDERIV_ABSTOL and MPDERIV_RELTOL settings.
 Default: 0 (no debugging)

 .MPDERIV_ABSTOL, .MPDERIV_RELTOL - tolerance settings for
 print-out of debugging information, for each parameter
 where debugging is enabled. See "TESTING and
 DEBUGGING" section above for the meanings of these two
 fields.

 .MPMAXSTEP - the maximum change to be made in the parameter
 value. During the fitting process, the parameter
 will never be changed by more than this value in
 one iteration.

 A value of 0 indicates no maximum. Default: 0.

 .TIED - a string expression which "ties" the parameter to other
 free or fixed parameters as an equality constraint. Any
 expression involving constants and the parameter array P
 are permitted.
 Example: if parameter 2 is always to be twice parameter

 1 then use the following: parinfo[2].tied = '2 * P[1]'.
 Since they are totally constrained, tied parameters are
 considered to be fixed; no errors are computed for them,
 and any LIMITS are not obeyed.
 [NOTE: the PARNAME can't be used in a TIED expression.]

 .MPPRINT - if set to 1, then the default ITERPROC will print the
 parameter value. If set to 0, the parameter value
 will not be printed. This tag can be used to
 selectively print only a few parameter values out of
 many. Default: 1 (all parameters printed)

 .MPFORMAT - IDL format string to print the parameter within
 ITERPROC. Default: '(G20.6)' (An empty string will
 also use the default.)

 Future modifications to the PARINFO structure, if any, will involve
 adding structure tags beginning with the two letters "MP".
 Therefore programmers are urged to avoid using tags starting with
 "MP", but otherwise they are free to include their own fields
 within the PARINFO structure, which will be ignored by MPFIT.

 PARINFO Example:
 parinfo = replicate({value:0.D, fixed:0, limited:[0,0], $
 limits:[0.D,0]}, 5)
 parinfo[0].fixed = 1
 parinfo[4].limited[0] = 1
 parinfo[4].limits[0] = 50.D
 parinfo[*].value = [5.7D, 2.2, 500., 1.5, 2000.]

 A total of 5 parameters, with starting values of 5.7,
 2.2, 500, 1.5, and 2000 are given. The first parameter
 is fixed at a value of 5.7, and the last parameter is
 constrained to be above 50.

 RECURSION

 Generally, recursion is not allowed. As of version 1.77, MPFIT has
 recursion protection which does not allow a model function to
 itself call MPFIT. Users who wish to perform multi-level
 optimization should investigate the 'EXTERNAL' function evaluation
 methods described below for hard-to-evaluate functions. That
 method places more control in the user's hands. The user can
 design a "recursive" application by taking care.

 In most cases the recursion protection should be well-behaved.
 However, if the user is doing debugging, it is possible for the
 protection system to get "stuck." In order to reset it, run the
 procedure:
 MPFIT_RESET_RECURSION
 and the protection system should get "unstuck." It is save to call
 this procedure at any time.

 COMPATIBILITY

 This function is designed to work with IDL 5.0 or greater.

 Because TIED parameters and the "(EXTERNAL)" user-model feature use
 the EXECUTE() function, they cannot be used with the free version
 of the IDL Virtual Machine.

 DETERMINING THE VERSION OF MPFIT

 MPFIT is a changing library. Users of MPFIT may also depend on a
 specific version of the library being present. As of version 1.70
 of MPFIT, a VERSION keyword has been added which allows the user to
 query which version is present. The keyword works like this:

 RESULT = MPFIT(/query, VERSION=version)

 This call uses the /QUERY keyword to query the version number
 without performing any computations. Users of MPFIT can call this
 method to determine which version is in the IDL path before
 actually using MPFIT to do any numerical work. Upon return, the
 VERSION keyword contains the version number of MPFIT, expressed as
 a string of the form 'X.Y' where X and Y are integers.

 Users can perform their own version checking, or use the built-in
 error checking of MPFIT. The MIN_VERSION keyword enforces the
 requested minimum version number. For example,

 RESULT = MPFIT(/query, VERSION=version, MIN_VERSION='1.70')

 will check whether the accessed version is 1.70 or greater, without
 performing any numerical processing.

 The VERSION and MIN_VERSION keywords were added in MPFIT
 version 1.70 and later. If the caller attempts to use the VERSION
 or MIN_VERSION keywords, and an *older* version of the code is
 present in the caller's path, then IDL will throw an 'unknown
 keyword' error. Therefore, in order to be robust, the caller, must
 use exception handling. Here is an example demanding at least
 version 1.70.

 MPFIT_OK = 0 & VERSION = '<unknown>'
 CATCH, CATCHERR
 IF CATCHERR EQ 0 THEN MPFIT_OK = MPFIT(/query, VERSION=version, $
 MIN_VERSION='1.70')
 CATCH, /CANCEL

 IF NOT MPFIT_OK THEN $
 MESSAGE, 'ERROR: you must have MPFIT version 1.70 or higher in '+$
 'your path (found version '+version+')'

 Of course, the caller can also do its own version number
 requirements checking.

 HARD-TO-COMPUTE FUNCTIONS: "EXTERNAL" EVALUATION

 The normal mode of operation for MPFIT is for the user to pass a

 function name, and MPFIT will call the user function multiple times
 as it iterates toward a solution.

 Some user functions are particularly hard to compute using the
 standard model of MPFIT. Usually these are functions that depend
 on a large amount of external data, and so it is not feasible, or
 at least highly impractical, to have MPFIT call it. In those cases
 it may be possible to use the "(EXTERNAL)" evaluation option.

 In this case the user is responsible for making all function *and
 derivative* evaluations. The function and Jacobian data are passed
 in through the EXTERNAL_FVEC and EXTERNAL_FJAC keywords,
 respectively. The user indicates the selection of this option by
 specifying a function name (MYFUNCT) of "(EXTERNAL)". No
 user-function calls are made when EXTERNAL evaluation is being
 used.

 ** SPECIAL NOTE ** For the "(EXTERNAL)" case, the quirk noted above
 does not apply. The gradient matrix, EXTERNAL_FJAC, should be
 comparable to "-FGRAD(x,p)/err", which is the *opposite* sign of
 the DP matrix described above. In other words, EXTERNAL_FJAC
 has the same sign as the derivative of EXTERNAL_FVEC, and the
 opposite sign of FGRAD.

 At the end of each iteration, control returns to the user, who must
 reevaluate the function at its new parameter values. Users should
 check the return value of the STATUS keyword, where a value of 9
 indicates the user should supply more data for the next iteration,
 and re-call MPFIT. The user may refrain from calling MPFIT
 further; as usual, STATUS will indicate when the solution has
 converged and no more iterations are required.

 Because MPFIT must maintain its own data structures between calls,
 the user must also pass a named variable to the EXTERNAL_STATE
 keyword. This variable must be maintained by the user, but not
 changed, throughout the fitting process. When no more iterations
 are desired, the named variable may be discarded.

 INPUTS:
 MYFUNCT - a string variable containing the name of the function to
 be minimized. The function should return the weighted
 deviations between the model and the data, as described
 above.

 For EXTERNAL evaluation of functions, this parameter
 should be set to a value of "(EXTERNAL)".

 START_PARAMS - An one-dimensional array of starting values for each of the
 parameters of the model. The number of parameters
 should be fewer than the number of measurements.
 Also, the parameters should have the same data type
 as the measurements (double is preferred).

 This parameter is optional if the PARINFO keyword
 is used (but see PARINFO). The PARINFO keyword
 provides a mechanism to fix or constrain individual

 parameters. If both START_PARAMS and PARINFO are
 passed, then the starting *value* is taken from
 START_PARAMS, but the *constraints* are taken from
 PARINFO.

 RETURNS:

 Returns the array of best-fit parameters.
 Exceptions:
 * if /QUERY is set (see QUERY).

 KEYWORD PARAMETERS:

 AUTODERIVATIVE - If this is set, derivatives of the function will
 be computed automatically via a finite
 differencing procedure. If not set, then MYFUNCT
 must provide the explicit derivatives.
 Default: set (=1)
 NOTE: to supply your own explicit derivatives,
 explicitly pass AUTODERIVATIVE=0

 BESTNORM - upon return, the value of the summed squared weighted
 residuals for the returned parameter values,
 i.e. TOTAL(DEVIATES^2).

 BEST_FJAC - upon return, BEST_FJAC contains the Jacobian, or
 partial derivative, matrix for the best-fit model.
 The values are an array,
 ARRAY(N_ELEMENTS(DEVIATES),NFREE) where NFREE is the
 number of free parameters. This array is only
 computed if /CALC_FJAC is set, otherwise BEST_FJAC is
 undefined.

 The returned array is such that BEST_FJAC[I,J] is the
 partial derivative of DEVIATES[I] with respect to
 parameter PARMS[PFREE_INDEX[J]]. Note that since
 deviates are (data-model)*weight, the Jacobian of the
 deviates will have the opposite sign from the
 Jacobian of the *model*, and may be scaled by a
 factor.

 BEST_RESID - upon return, an array of best-fit deviates.

 CALC_FJAC - if set, then calculate the Jacobian and return it in
 BEST_FJAC. If not set, then the return value of
 BEST_FJAC is undefined.

 COVAR - the covariance matrix for the set of parameters returned
 by MPFIT. The matrix is NxN where N is the number of
 parameters. The square root of the diagonal elements
 gives the formal 1-sigma statistical errors on the
 parameters IF errors were treated "properly" in MYFUNC.
 Parameter errors are also returned in PERROR.

 To compute the correlation matrix, PCOR, use this example:
 PCOR = COV * 0

 FOR i = 0, n-1 DO FOR j = 0, n-1 DO $
 PCOR[i,j] = COV[i,j]/sqrt(COV[i,i]*COV[j,j])
 or equivalently, in vector notation,
 PCOR = COV / (PERROR # PERROR)

 If NOCOVAR is set or MPFIT terminated abnormally, then
 COVAR is set to a scalar with value !VALUES.D_NAN.

 DOF - number of degrees of freedom, computed as
 DOF = N_ELEMENTS(DEVIATES) - NFREE
 Note that this doesn't account for pegged parameters (see
 NPEGGED). It also does not account for data points which
 are assigned zero weight by the user function.

 ERRMSG - a string error or warning message is returned.

 EXTERNAL_FVEC - upon input, the function values, evaluated at
 START_PARAMS. This should be an M-vector, where M
 is the number of data points.

 EXTERNAL_FJAC - upon input, the Jacobian array of partial
 derivative values. This should be a M x N array,
 where M is the number of data points and N is the
 number of parameters. NOTE: that all FIXED or
 TIED parameters must *not* be included in this
 array.

 EXTERNAL_STATE - a named variable to store MPFIT-related state
 information between iterations (used in input and
 output to MPFIT). The user must not manipulate
 or discard this data until the final iteration is
 performed.

 FASTNORM - set this keyword to select a faster algorithm to
 compute sum-of-square values internally. For systems
 with large numbers of data points, the standard
 algorithm can become prohibitively slow because it
 cannot be vectorized well. By setting this keyword,
 MPFIT will run faster, but it will be more prone to
 floating point overflows and underflows. Thus, setting
 this keyword may sacrifice some stability in the
 fitting process.

 FTOL - a nonnegative input variable. Termination occurs when both
 the actual and predicted relative reductions in the sum of
 squares are at most FTOL (and STATUS is accordingly set to
 1 or 3). Therefore, FTOL measures the relative error
 desired in the sum of squares. Default: 1D-10

 FUNCTARGS - A structure which contains the parameters to be passed
 to the user-supplied function specified by MYFUNCT via
 the _EXTRA mechanism. This is the way you can pass
 additional data to your user-supplied function without
 using common blocks.

 Consider the following example:
 if FUNCTARGS = { XVAL:[1.D,2,3], YVAL:[1.D,4,9],

 ERRVAL:[1.D,1,1] }
 then the user supplied function should be declared
 like this:
 FUNCTION MYFUNCT, P, XVAL=x, YVAL=y, ERRVAL=err

 By default, no extra parameters are passed to the
 user-supplied function, but your function should
 accept *at least* one keyword parameter. [This is to
 accomodate a limitation in IDL's _EXTRA
 parameter-passing mechanism.]

 GTOL - a nonnegative input variable. Termination occurs when the
 cosine of the angle between fvec and any column of the
 jacobian is at most GTOL in absolute value (and STATUS is
 accordingly set to 4). Therefore, GTOL measures the
 orthogonality desired between the function vector and the
 columns of the jacobian. Default: 1D-10

 ITERARGS - The keyword arguments to be passed to ITERPROC via the
 _EXTRA mechanism. This should be a structure, and is
 similar in operation to FUNCTARGS.
 Default: no arguments are passed.

 ITERPRINT - The name of an IDL procedure, equivalent to PRINT,
 that ITERPROC will use to render output. ITERPRINT
 should be able to accept at least four positional
 arguments. In addition, it should be able to accept
 the standard FORMAT keyword for output formatting; and
 the UNIT keyword, to redirect output to a logical file
 unit (default should be UNIT=1, standard output).
 These keywords are passed using the ITERARGS keyword
 above. The ITERPRINT procedure must accept the _EXTRA
 keyword.
 NOTE: that much formatting can be handled with the
 MPPRINT and MPFORMAT tags.
 Default: 'MPFIT_DEFPRINT' (default internal formatter)

 ITERPROC - The name of a procedure to be called upon each NPRINT
 iteration of the MPFIT routine. ITERPROC is always
 called in the final iteration. It should be declared
 in the following way:

 PRO ITERPROC, MYFUNCT, p, iter, fnorm, FUNCTARGS=fcnargs, $
 PARINFO=parinfo, QUIET=quiet, DOF=dof, PFORMAT=pformat, $
 UNIT=unit, ...
 ; perform custom iteration update
 END

 ITERPROC must either accept all three keyword
 parameters (FUNCTARGS, PARINFO and QUIET), or at least
 accept them via the _EXTRA keyword.

 MYFUNCT is the user-supplied function to be minimized,
 P is the current set of model parameters, ITER is the
 iteration number, and FUNCTARGS are the arguments to be
 passed to MYFUNCT. FNORM should be the chi-squared
 value. QUIET is set when no textual output should be

 printed. DOF is the number of degrees of freedom,
 normally the number of points less the number of free
 parameters. See below for documentation of PARINFO.
 PFORMAT is the default parameter value format. UNIT is
 passed on to the ITERPRINT procedure, and should
 indicate the file unit where log output will be sent
 (default: standard output).

 In implementation, ITERPROC can perform updates to the
 terminal or graphical user interface, to provide
 feedback while the fit proceeds. If the fit is to be
 stopped for any reason, then ITERPROC should set the
 common block variable ERROR_CODE to negative value
 between -15 and -1 (see MPFIT_ERROR common block
 below). In principle, ITERPROC should probably not
 modify the parameter values, because it may interfere
 with the algorithm's stability. In practice it is
 allowed.

 Default: an internal routine is used to print the
 parameter values.

 ITERSTOP - Set this keyword if you wish to be able to stop the
 fitting by hitting the predefined ITERKEYSTOP key on
 the keyboard. This only works if you use the default
 ITERPROC.

 ITERKEYSTOP - A keyboard key which will halt the fit (and if
 ITERSTOP is set and the default ITERPROC is used).
 ITERSTOPKEY may either be a one-character string
 with the desired key, or a scalar integer giving the
 ASCII code of the desired key.
 Default: 7b (control-g)

 NOTE: the default value of ASCI 7 (control-G) cannot
 be read in some windowing environments, so you must
 change to a printable character like 'q'.

 MAXITER - The maximum number of iterations to perform. If the
 number of calculation iterations exceeds MAXITER, then
 the STATUS value is set to 5 and MPFIT returns.

 If MAXITER EQ 0, then MPFIT does not iterate to adjust
 parameter values; however, the user function is evaluated
 and parameter errors/covariance/Jacobian are estimated
 before returning.
 Default: 200 iterations

 MIN_VERSION - The minimum requested version number. This must be
 a scalar string of the form returned by the VERSION
 keyword. If the current version of MPFIT does not
 satisfy the minimum requested version number, then,
 MPFIT(/query, min_version='...') returns 0
 MPFIT(...) returns NAN
 Default: no version number check
 NOTE: MIN_VERSION was added in MPFIT version 1.70

 NFEV - the number of MYFUNCT function evaluations performed.

 NFREE - the number of free parameters in the fit. This includes
 parameters which are not FIXED and not TIED, but it does
 include parameters which are pegged at LIMITS.

 NITER - the number of iterations completed.

 NOCATCH - if set, then MPFIT will not perform any error trapping.
 By default (not set), MPFIT will trap errors and report
 them to the caller. This keyword will typically be used
 for debugging.

 NOCOVAR - set this keyword to prevent the calculation of the
 covariance matrix before returning (see COVAR)

 NPEGGED - the number of free parameters which are pegged at a
 LIMIT.

 NPRINT - The frequency with which ITERPROC is called. A value of
 1 indicates that ITERPROC is called with every iteration,
 while 2 indicates every other iteration, etc. Be aware
 that several Levenberg-Marquardt attempts can be made in
 a single iteration. Also, the ITERPROC is *always*
 called for the final iteration, regardless of the
 iteration number.
 Default value: 1

 PARINFO - A one-dimensional array of structures.
 Provides a mechanism for more sophisticated constraints
 to be placed on parameter values. When PARINFO is not
 passed, then it is assumed that all parameters are free
 and unconstrained. Values in PARINFO are never
 modified during a call to MPFIT.

 See description above for the structure of PARINFO.

 Default value: all parameters are free and unconstrained.

 PERROR - The formal 1-sigma errors in each parameter, computed
 from the covariance matrix. If a parameter is held
 fixed, or if it touches a boundary, then the error is
 reported as zero.

 If the fit is unweighted (i.e. no errors were given, or
 the weights were uniformly set to unity), then PERROR
 will probably not represent the true parameter
 uncertainties.

 If you can assume that the true reduced chi-squared
 value is unity -- meaning that the fit is implicitly
 assumed to be of good quality -- then the estimated
 parameter uncertainties can be computed by scaling PERROR
 by the measured chi-squared value.

 DOF = N_ELEMENTS(X) - N_ELEMENTS(PARMS) ; deg of freedom

 PCERROR = PERROR * SQRT(BESTNORM / DOF) ; scaled
uncertainties

 PFREE_INDEX - upon return, PFREE_INDEX contains an index array
 which indicates which parameter were allowed to
 vary. I.e. of all the parameters PARMS, only
 PARMS[PFREE_INDEX] were varied.

 QUERY - if set, then MPFIT() will return immediately with one of
 the following values:
 1 - if MIN_VERSION is not set
 1 - if MIN_VERSION is set and MPFIT satisfies the minimum
 0 - if MIN_VERSION is set and MPFIT does not satisfy it
 The VERSION output keyword is always set upon return.
 Default: not set.

 QUIET - set this keyword when no textual output should be printed
 by MPFIT

 RESDAMP - a scalar number, indicating the cut-off value of
 residuals where "damping" will occur. Residuals with
 magnitudes greater than this number will be replaced by
 their logarithm. This partially mitigates the so-called
 large residual problem inherent in least-squares solvers
 (as for the test problem CURVI, http://www.maxthis.com/-
 curviex.htm). A value of 0 indicates no damping.
 Default: 0

 Note: RESDAMP doesn't work with AUTODERIV=0

 STATUS - an integer status code is returned. All values greater
 than zero can represent success (however STATUS EQ 5 may
 indicate failure to converge). It can have one of the
 following values:

 -18 a fatal execution error has occurred. More information
 may be available in the ERRMSG string.

 -16 a parameter or function value has become infinite or an
 undefined number. This is usually a consequence of
 numerical overflow in the user's model function, which
 must be avoided.

 -15 to -1
 these are error codes that either MYFUNCT or ITERPROC
 may return to terminate the fitting process (see
 description of MPFIT_ERROR common below). If either
 MYFUNCT or ITERPROC set ERROR_CODE to a negative number,
 then that number is returned in STATUS. Values from -15
 to -1 are reserved for the user functions and will not
 clash with MPFIT.

 0 improper input parameters.

 1 both actual and predicted relative reductions
 in the sum of squares are at most FTOL.

 2 relative error between two consecutive iterates
 is at most XTOL

 3 conditions for STATUS = 1 and STATUS = 2 both hold.

 4 the cosine of the angle between fvec and any
 column of the jacobian is at most GTOL in
 absolute value.

 5 the maximum number of iterations has been reached

 6 FTOL is too small. no further reduction in
 the sum of squares is possible.

 7 XTOL is too small. no further improvement in
 the approximate solution x is possible.

 8 GTOL is too small. fvec is orthogonal to the
 columns of the jacobian to machine precision.

 9 A successful single iteration has been completed, and
 the user must supply another "EXTERNAL" evaluation of
 the function and its derivatives. This status indicator
 is neither an error nor a convergence indicator.

 VERSION - upon return, VERSION will be set to the MPFIT internal
 version number. The version number will be a string of
 the form "X.Y" where X is a major revision number and Y
 is a minor revision number.
 NOTE: the VERSION keyword was not present before
 MPFIT version number 1.70, therefore, callers must
 use exception handling when using this keyword.

 XTOL - a nonnegative input variable. Termination occurs when the
 relative error between two consecutive iterates is at most
 XTOL (and STATUS is accordingly set to 2 or 3). Therefore,
 XTOL measures the relative error desired in the approximate
 solution. Default: 1D-10

 EXAMPLE:

 p0 = [5.7D, 2.2, 500., 1.5, 2000.]
 fa = {X:x, Y:y, ERR:err}
 p = mpfit('MYFUNCT', p0, functargs=fa)

 Minimizes sum of squares of MYFUNCT. MYFUNCT is called with the X,
 Y, and ERR keyword parameters that are given by FUNCTARGS. The
 resulting parameter values are returned in p.

 COMMON BLOCKS:

 COMMON MPFIT_ERROR, ERROR_CODE

 User routines may stop the fitting process at any time by
 setting an error condition. This condition may be set in either

 the user's model computation routine (MYFUNCT), or in the
 iteration procedure (ITERPROC).

 To stop the fitting, the above common block must be declared,
 and ERROR_CODE must be set to a negative number. After the user
 procedure or function returns, MPFIT checks the value of this
 common block variable and exits immediately if the error
 condition has been set. This value is also returned in the
 STATUS keyword: values of -1 through -15 are reserved error
 codes for the user routines. By default the value of ERROR_CODE
 is zero, indicating a successful function/procedure call.

 COMMON MPFIT_PROFILE
 COMMON MPFIT_MACHAR
 COMMON MPFIT_CONFIG

 These are undocumented common blocks are used internally by
 MPFIT and may change in future implementations.

 THEORY OF OPERATION:

 There are many specific strategies for function minimization. One
 very popular technique is to use function gradient information to
 realize the local structure of the function. Near a local minimum
 the function value can be taylor expanded about x0 as follows:

 f(x) = f(x0) + f'(x0) . (x-x0) + (1/2) (x-x0) . f''(x0) . (x-x0)
 ----- --------------- ------------------------------- (1)
 Order 0th 1st 2nd

 Here f'(x) is the gradient vector of f at x, and f''(x) is the
 Hessian matrix of second derivatives of f at x. The vector x is
 the set of function parameters, not the measured data vector. One
 can find the minimum of f, f(xm) using Newton's method, and
 arrives at the following linear equation:

 f''(x0) . (xm-x0) = - f'(x0) (2)

 If an inverse can be found for f''(x0) then one can solve for
 (xm-x0), the step vector from the current position x0 to the new
 projected minimum. Here the problem has been linearized (ie, the
 gradient information is known to first order). f''(x0) is
 symmetric n x n matrix, and should be positive definite.

 The Levenberg - Marquardt technique is a variation on this theme.
 It adds an additional diagonal term to the equation which may aid the
 convergence properties:

 (f''(x0) + nu I) . (xm-x0) = -f'(x0) (2a)

 where I is the identity matrix. When nu is large, the overall
 matrix is diagonally dominant, and the iterations follow steepest
 descent. When nu is small, the iterations are quadratically
 convergent.

 In principle, if f''(x0) and f'(x0) are known then xm-x0 can be
 determined. However the Hessian matrix is often difficult or

 impossible to compute. The gradient f'(x0) may be easier to
 compute, if even by finite difference techniques. So-called
 quasi-Newton techniques attempt to successively estimate f''(x0)
 by building up gradient information as the iterations proceed.

 In the least squares problem there are further simplifications
 which assist in solving eqn (2). The function to be minimized is
 a sum of squares:

 f = Sum(hi^2) (3)

 where hi is the ith residual out of m residuals as described
 above. This can be substituted back into eqn (2) after computing
 the derivatives:

 f' = 2 Sum(hi hi')
 f'' = 2 Sum(hi' hj') + 2 Sum(hi hi'') (4)

 If one assumes that the parameters are already close enough to a
 minimum, then one typically finds that the second term in f'' is
 negligible [or, in any case, is too difficult to compute]. Thus,
 equation (2) can be solved, at least approximately, using only
 gradient information.

 In matrix notation, the combination of eqns (2) and (4) becomes:

 hT' . h' . dx = - hT' . h (5)

 Where h is the residual vector (length m), hT is its transpose, h'
 is the Jacobian matrix (dimensions n x m), and dx is (xm-x0). The
 user function supplies the residual vector h, and in some cases h'
 when it is not found by finite differences (see MPFIT_FDJAC2,
 which finds h and hT'). Even if dx is not the best absolute step
 to take, it does provide a good estimate of the best *direction*,
 so often a line minimization will occur along the dx vector
 direction.

 The method of solution employed by MINPACK is to form the Q . R
 factorization of h', where Q is an orthogonal matrix such that QT .
 Q = I, and R is upper right triangular. Using h' = Q . R and the
 ortogonality of Q, eqn (5) becomes

 (RT . QT) . (Q . R) . dx = - (RT . QT) . h
 RT . R . dx = - RT . QT . h (6)
 R . dx = - QT . h

 where the last statement follows because R is upper triangular.
 Here, R, QT and h are known so this is a matter of solving for dx.
 The routine MPFIT_QRFAC provides the QR factorization of h, with
 pivoting, and MPFIT_QRSOL;V provides the solution for dx.

 REFERENCES:

 Markwardt, C. B. 2008, "Non-Linear Least Squares Fitting in IDL
 with MPFIT," in proc. Astronomical Data Analysis Software and
 Systems XVIII, Quebec, Canada, ASP Conference Series, Vol. XXX, eds.
 D. Bohlender, P. Dowler & D. Durand (Astronomical Society of the

 Pacific: San Francisco), p. 251-254 (ISBN: 978-1-58381-702-5)
 http://arxiv.org/abs/0902.2850
 Link to NASA ADS: http://adsabs.harvard.edu/abs/2009ASPC..411..251M
 Link to ASP: http://aspbooks.org/a/volumes/table_of_contents/411

 Refer to the MPFIT website as:
 http://purl.com/net/mpfit

 MINPACK-1 software, by Jorge More' et al, available from netlib.
 http://www.netlib.org/

 "Optimization Software Guide," Jorge More' and Stephen Wright,
 SIAM, *Frontiers in Applied Mathematics*, Number 14.
 (ISBN: 978-0-898713-22-0)

 More', J. 1978, "The Levenberg-Marquardt Algorithm: Implementation
 and Theory," in Numerical Analysis, vol. 630, ed. G. A. Watson
 (Springer-Verlag: Berlin), p. 105 (DOI: 10.1007/BFb0067690)

 MODIFICATION HISTORY:
 Translated from MINPACK-1 in FORTRAN, Apr-Jul 1998, CM
 Fixed bug in parameter limits (x vs xnew), 04 Aug 1998, CM
 Added PERROR keyword, 04 Aug 1998, CM
 Added COVAR keyword, 20 Aug 1998, CM
 Added NITER output keyword, 05 Oct 1998
 D.L Windt, Bell Labs, windt@bell-labs.com;
 Made each PARINFO component optional, 05 Oct 1998 CM
 Analytical derivatives allowed via AUTODERIVATIVE keyword, 09 Nov 1998
 Parameter values can be tied to others, 09 Nov 1998
 Fixed small bugs (Wayne Landsman), 24 Nov 1998
 Added better exception error reporting, 24 Nov 1998 CM
 Cosmetic documentation changes, 02 Jan 1999 CM
 Changed definition of ITERPROC to be consistent with TNMIN, 19 Jan 1999 CM
 Fixed bug when AUTDERIVATIVE=0. Incorrect sign, 02 Feb 1999 CM
 Added keyboard stop to MPFIT_DEFITER, 28 Feb 1999 CM
 Cosmetic documentation changes, 14 May 1999 CM
 IDL optimizations for speed & FASTNORM keyword, 15 May 1999 CM
 Tried a faster version of mpfit_enorm, 30 May 1999 CM
 Changed web address to cow.physics.wisc.edu, 14 Jun 1999 CM
 Found malformation of FDJAC in MPFIT for 1 parm, 03 Aug 1999 CM
 Factored out user-function call into MPFIT_CALL. It is possible,
 but currently disabled, to call procedures. The calling format
 is similar to CURVEFIT, 25 Sep 1999, CM
 Slightly changed mpfit_tie to be less intrusive, 25 Sep 1999, CM
 Fixed some bugs associated with tied parameters in mpfit_fdjac, 25
 Sep 1999, CM
 Reordered documentation; now alphabetical, 02 Oct 1999, CM
 Added QUERY keyword for more robust error detection in drivers, 29
 Oct 1999, CM
 Documented PERROR for unweighted fits, 03 Nov 1999, CM
 Split out MPFIT_RESETPROF to aid in profiling, 03 Nov 1999, CM
 Some profiling and speed optimization, 03 Nov 1999, CM
 Worst offenders, in order: fdjac2, qrfac, qrsolv, enorm.
 fdjac2 depends on user function, qrfac and enorm seem to be
 fully optimized. qrsolv probably could be tweaked a little, but
 is still <10% of total compute time.
 Made sure that !err was set to 0 in MPFIT_DEFITER, 10 Jan 2000, CM

 Fixed small inconsistency in setting of QANYLIM, 28 Jan 2000, CM
 Added PARINFO field RELSTEP, 28 Jan 2000, CM
 Converted to MPFIT_ERROR common block for indicating error
 conditions, 28 Jan 2000, CM
 Corrected scope of MPFIT_ERROR common block, CM, 07 Mar 2000
 Minor speed improvement in MPFIT_ENORM, CM 26 Mar 2000
 Corrected case where ITERPROC changed parameter values and
 parameter values were TIED, CM 26 Mar 2000
 Changed MPFIT_CALL to modify NFEV automatically, and to support
 user procedures more, CM 26 Mar 2000
 Copying permission terms have been liberalized, 26 Mar 2000, CM
 Catch zero value of zero a(j,lj) in MPFIT_QRFAC, 20 Jul 2000, CM
 (thanks to David Schlegel <schlegel@astro.princeton.edu>)
 MPFIT_SETMACHAR is called only once at init; only one common block
 is created (MPFIT_MACHAR); it is now a structure; removed almost
 all CHECK_MATH calls for compatibility with IDL5 and !EXCEPT;
 profiling data is now in a structure too; noted some
 mathematical discrepancies in Linux IDL5.0, 17 Nov 2000, CM
 Some significant changes. New PARINFO fields: MPSIDE, MPMINSTEP,
 MPMAXSTEP. Improved documentation. Now PTIED constraints are
 maintained in the MPCONFIG common block. A new procedure to
 parse PARINFO fields. FDJAC2 now computes a larger variety of
 one-sided and two-sided finite difference derivatives. NFEV is
 stored in the MPCONFIG common now. 17 Dec 2000, CM
 Added check that PARINFO and XALL have same size, 29 Dec 2000 CM
 Don't call function in TERMINATE when there is an error, 05 Jan
 2000
 Check for float vs. double discrepancies; corrected implementation
 of MIN/MAXSTEP, which I still am not sure of, but now at least
 the correct behavior occurs *without* it, CM 08 Jan 2001
 Added SCALE_FCN keyword, to allow for scaling, as for the CASH
 statistic; added documentation about the theory of operation,
 and under the QR factorization; slowly I'm beginning to
 understand the bowels of this algorithm, CM 10 Jan 2001
 Remove MPMINSTEP field of PARINFO, for now at least, CM 11 Jan
 2001
 Added RESDAMP keyword, CM, 14 Jan 2001
 Tried to improve the DAMP handling a little, CM, 13 Mar 2001
 Corrected .PARNAME behavior in _DEFITER, CM, 19 Mar 2001
 Added checks for parameter and function overflow; a new STATUS
 value to reflect this; STATUS values of -15 to -1 are reserved
 for user function errors, CM, 03 Apr 2001
 DAMP keyword is now a TANH, CM, 03 Apr 2001
 Added more error checking of float vs. double, CM, 07 Apr 2001
 Fixed bug in handling of parameter lower limits; moved overflow
 checking to end of loop, CM, 20 Apr 2001
 Failure using GOTO, TERMINATE more graceful if FNORM1 not defined,
 CM, 13 Aug 2001
 Add MPPRINT tag to PARINFO, CM, 19 Nov 2001
 Add DOF keyword to DEFITER procedure, and print degrees of
 freedom, CM, 28 Nov 2001
 Add check to be sure MYFUNCT is a scalar string, CM, 14 Jan 2002
 Addition of EXTERNAL_FJAC, EXTERNAL_FVEC keywords; ability to save
 fitter's state from one call to the next; allow '(EXTERNAL)'
 function name, which implies that user will supply function and
 Jacobian at each iteration, CM, 10 Mar 2002
 Documented EXTERNAL evaluation code, CM, 10 Mar 2002

 Corrected signficant bug in the way that the STEP parameter, and
 FIXED parameters interacted (Thanks Andrew Steffl), CM, 02 Apr
 2002
 Allow COVAR and PERROR keywords to be computed, even in case of
 '(EXTERNAL)' function, 26 May 2002
 Add NFREE and NPEGGED keywords; compute NPEGGED; compute DOF using
 NFREE instead of n_elements(X), thanks to Kristian Kjaer, CM 11
 Sep 2002
 Hopefully PERROR is all positive now, CM 13 Sep 2002
 Documented RELSTEP field of PARINFO (!!), CM, 25 Oct 2002
 Error checking to detect missing start pars, CM 12 Apr 2003
 Add DOF keyword to return degrees of freedom, CM, 30 June 2003
 Always call ITERPROC in the final iteration; add ITERKEYSTOP
 keyword, CM, 30 June 2003
 Correct bug in MPFIT_LMPAR of singularity handling, which might
 likely be fatal for one-parameter fits, CM, 21 Nov 2003
 (with thanks to Peter Tuthill for the proper test case)
 Minor documentation adjustment, 03 Feb 2004, CM
 Correct small error in QR factorization when pivoting; document
 the return values of QRFAC when pivoting, 21 May 2004, CM
 Add MPFORMAT field to PARINFO, and correct behavior of interaction
 between MPPRINT and PARNAME in MPFIT_DEFITERPROC (thanks to Tim
 Robishaw), 23 May 2004, CM
 Add the ITERPRINT keyword to allow redirecting output, 26 Sep
 2004, CM
 Correct MAXSTEP behavior in case of a negative parameter, 26 Sep
 2004, CM
 Fix bug in the parsing of MINSTEP/MAXSTEP, 10 Apr 2005, CM
 Fix bug in the handling of upper/lower limits when the limit was
 negative (the fitting code would never "stick" to the lower
 limit), 29 Jun 2005, CM
 Small documentation update for the TIED field, 05 Sep 2005, CM
 Convert to IDL 5 array syntax (!), 16 Jul 2006, CM
 If MAXITER equals zero, then do the basic parameter checking and
 uncertainty analysis, but do not adjust the parameters, 15 Aug
 2006, CM
 Added documentation, 18 Sep 2006, CM
 A few more IDL 5 array syntax changes, 25 Sep 2006, CM
 Move STRICTARR compile option inside each function/procedure, 9 Oct 2006
 Bug fix for case of MPMAXSTEP and fixed parameters, thanks
 to Huib Intema (who found it from the Python translation!), 05 Feb 2007
 Similar fix for MPFIT_FDJAC2 and the MPSIDE sidedness of
 derivatives, also thanks to Huib Intema, 07 Feb 2007
 Clarify documentation on user-function, derivatives, and PARINFO,
 27 May 2007
 Change the wording of "Analytic Derivatives" to "Explicit
 Derivatives" in the documentation, CM, 03 Sep 2007
 Further documentation tweaks, CM, 13 Dec 2007
 Add COMPATIBILITY section and add credits to copyright, CM, 13 Dec
 2007
 Document and enforce that START_PARMS and PARINFO are 1-d arrays,
 CM, 29 Mar 2008
 Previous change for 1-D arrays wasn't correct for
 PARINFO.LIMITED/.LIMITS; now fixed, CM, 03 May 2008
 Documentation adjustments, CM, 20 Aug 2008
 Change some minor FOR-loop variables to type-long, CM, 03 Sep 2008
 Change error handling slightly, document NOCATCH keyword,

 document error handling in general, CM, 01 Oct 2008
 Special case: when either LIMITS is zero, and a parameter pushes
 against that limit, the coded that 'pegged' it there would not
 work since it was a relative condition; now zero is handled
 properly, CM, 08 Nov 2008
 Documentation of how TIED interacts with LIMITS, CM, 21 Dec 2008
 Better documentation of references, CM, 27 Feb 2009
 If MAXITER=0, then be sure to set STATUS=5, which permits the
 the covariance matrix to be computed, CM, 14 Apr 2009
 Avoid numerical underflow while solving for the LM parameter,
 (thanks to Sergey Koposov) CM, 14 Apr 2009
 Use individual functions for all possible MPFIT_CALL permutations,
 (and make sure the syntax is right) CM, 01 Sep 2009
 Correct behavior of MPMAXSTEP when some parameters are frozen,
 thanks to Josh Destree, CM, 22 Nov 2009
 Update the references section, CM, 22 Nov 2009
 1.70 - Add the VERSION and MIN_VERSION keywords, CM, 22 Nov 2009
 1.71 - Store pre-calculated revision in common, CM, 23 Nov 2009
 1.72-1.74 - Documented alternate method to compute correlation matrix,
 CM, 05 Feb 2010
 1.75 - Enforce TIED constraints when preparing to terminate the
 routine, CM, 2010-06-22
 1.76 - Documented input keywords now are not modified upon output,
 CM, 2010-07-13
 1.77 - Upon user request (/CALC_FJAC), compute Jacobian matrix and
 return in BEST_FJAC; also return best residuals in
 BEST_RESID; also return an index list of free parameters as
 PFREE_INDEX; add a fencepost to prevent recursion
 CM, 2010-10-27
 1.79 - Documentation corrections. CM, 2011-08-26
 1.81 - Fix bug in interaction of AUTODERIVATIVE=0 and .MPSIDE=3;
 Document FJAC_MASK. CM, 2012-05-08

 Add accomodation for PDIF_ITER_DISPLAY and PDIF_ITER_COUNT
 tagnames to the FCNARGS keyword. If FCNARGS.PDIF_ITER_DISPLAY is
 set to 1 when mpfit is called, then FCNARGS.PDIF_ITER_COUNT is set
 during computation of partial derivatives to the index of the
 partial derivative being computed. This allows the calling
 program to display the iteration count in real
 time. 13-May-2013. D. L. Windt, Reflective X-ray Optics,
 davidwindt@gmail.com

 $Id: mpfit.pro,v 1.82 2012/09/27 23:59:44 cmarkwar Exp $

(See ./mpfit.pro)

OEPLOT

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 OEPLOT

 PURPOSE:

 Overplot x vs y, with vertical error bars on y.

 CALLING SEQUENCE:

 OEPLOT,Y,SIGY
 OEPLOT,X,Y,SIGY
 OEPLOT,Y,SIGY_UP,SIGY_DOWN
 OEPLOT,X,Y,SIGY_UP,SIGY_DOWN

 INPUTS:

 X, Y - 1-D arrays

 SIGY - Uncertainty in y, i.e. Y+/-SIGY

 SIGY_UP, SIGY_DOWN - +/- uncertainties in Y,
 i.e., Y +SIGY_UP -SIGY_DOWN

 KEYWORD PARAMETERS:

 BARLINESTYLE = Linestyle for error bars.

 plus the IDL keywords color, linestyle,thick, psym,
 symsize, noclip, and t3d.

 MODIFICATION HISTORY:

 D. L. Windt, Bell Laboratories, November 1989
 windt@bell-labs.com

(See ./oeplot.pro)

PLOT_MOVIE

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 PLOT_MOVIE

 PURPOSE:

 Display an animated sequence of X-Y plots in a window.

 CALLING SEQUENCE:

 PLOT_MOVIE,X,Y[,Y1,Y2,Y3,Y4]

 INPUT PARAMETERS:

 X = N_x-element array, common to all Y vectors

 Y = 2D array, N_x x N_plots

 OPTIONAL INPUT PARAMETERS:

 Y1, Y2, Y3, Y4 - additional Y arrays to be overplotted; these
 must all have the same dimensions as Y.

 KEYWORD PARAMETERS:

 XRANGE- A two-element vector specifying the xrange of the
 plot. Default = [0, max(x)]

 YRANGE- A two-element vector specifying the yrange of the
 plot. Default = [0 < min(y)*1.05,max(y)*1.05]

 COLOR- array of colors for each Y plot

 LINESTYLE - array of linestyles for each Y plot

 THICK - array of thicknesses for each Y plot

 _EXTRA - This keyword is use to pass additional parameters to
 the plot command.

 EXAMPLE:

 Make a movie of two 'travelling' sin waves:

 X=VECTOR(0.,100.,100)
 Y=FLTARR(100,30)
 for i=0,29 do Y(*,i)=sin((x+i*!pi)/!pi)
 Y1=-Y
 PLOT_MOVIE,X,Y,Y1

 MODIFICATION HISTORY:

 Written by: David L. Windt, Bell Labs, April 1994

 windt@bell-labs.com

(See ./plot_movie.pro)

PLOT_PRINT

[Previous Routine] [Next Routine] [List of Routines]
 NAME:
 PLOT_PRINT

 PURPOSE:

 A widget-based interface for creating and printing IDL
 graphics output files. The widget allows the user to
 select an output device type (PS, PCL, or HP), and specify
 whether or not to use color, the color depth (for PS), the
 plot orientation (landscape or portrait), the size of the
 plot, whether or not to use Vector or PS fonts, the name of
 the file to create, whether to send the file to a printer,
 and the print command.

 CALLING SEQUENCE:

 PLOT_PRINT,PLOT_PROCEDURE

 INPUTS:
 PLOT_PROCEDURE - A string containing the name of the
 procedure - or the executable IDL code - that
 creates the desire graphics. See EXAMPLE
 below for more details.

 KEYWORD PARAMETERS:

 PRINTPARS - a structure of the following form (default
 values indicated), whose values are used to
 set the initial value of this quasi-compound widget:

 PRINTPARS={ $
 device:0, $; 0=PS, 1=HP, 2=PCL, 3=CGM
 psfont:0, $; 0=use vector fonts, 1=use PS fonts.
 color:1, $; 0=B&W, 1=color
 depth:2, $; PS resolution: 0=>1, 1=>2, 2=>4, 4=>8.
 orient:0, $; 0=portrait, 1=landscape
 size:1, $; 0=small, 1=large, 2=custom (i.e., use
 plotsize)
 plotsize:[xsize,ysize,xoffset,yoffset], $
 ; keyword to the DEVICE command,
 ; in inches. only used if size=2.
 file_name:'idl.ps', $; default file name
 print:1, $; 0=print only to file, 1=send to printer.
 command:'lpr -Plp'} ; print command

 GROUP - the standard GROUP_LEADER keyword, which is passed directly
 to XMANAGER when the PLOT_PRINT widget is created.

 COMMON BLOCKS:

 PLOT_PRINT, plot_printpars

 where plot_printpars = the current state of
 the printpars structure.

 SIDE EFFECTS:

 The returned value of the printpars structure, if passed,
 is changed to reflect the settings changes made by the

 user. Thus, settings shown in the widget upon subsequent
 calls to plot_print with the same printpars structure will
 show the same settings as the last call to PLOT_PRINT.

 RESTRICTIONS:

 Requires widgets. Requires several programs in the windt
 library, including a modified version of CW_FIELD.

 The PLOT_PRINT widget is modal.

 EXAMPLE:

 This program is intended to be used from within another
 widget application, where a procedure is already defined
 that creates the graphics. You can then add a WIDGET_BUTTON
 to this application, labelled "Print", for example, that
 when pressed calls PLOT_PRINT, with the name of the plot
 creation procedure as the input. i.e., pressing the "Print"
 button would execute the IDL code < PLOT_PRINT,"myplot" >.

 For example:

 PRO MYPLOT_EV,event

 widget_control,event.id,get_uvalue=eventval
 if eventval eq 'print' then plot_print,'myplot_plot'
 if eventval eq 'done' then widget_control,event.top,/destroy
 return
 end

 PRO MYPLOT_PLOT

 plot,[1,2],title='My Plot'
 return
 end

 PRO MYPLOT

 base=widget_base(mbar=menubar)
 file=widget_button(menubar,/menu,value='File')
 print=widget_button(file,value='Print...',uvalue='print')
 done=widget_button(file,value='Quit',uvalue='done')
 window=widget_draw(base,xsize=400,ysize=300)
 widget_control,base,/realize
 myplot_plot
 xmanager,'myplot',base,event='myplot_ev'
 return
 end

 Of course, you can call the program right from the command
 line too, as in

 IDL> plot_print,'x=vector(0.,!pi,100) & y=sin(5*x) &
plot,x,y,/xstyle'

 MODIFICATION HISTORY:

 David L. Windt, Bell Labs, March 1997

 May 1997 - Modified use of MODAL keyword to work with
 changes in IDL V5.0.

 June 1997 - Changed text and field widgets so that it's no
 longer necessary to hit <return> after entering
 text. But this requires use of the modified
 CW_FIELD widget.

 January 1998 - Added support for CGM graphics; switched
 plot_print.device values for HP and PCL
 output, to be consistent with the SP.PRO
 routine.

 March 1998 - Made some attempt to include a better default
 print command for HP-UX and Win95 platforms.

 May 1998 - The user is now prompted before attempting to
 write over an existing file.

 January 2004 - Various cosmetics.

 windt@bell-labs.com

 DLW, June 2003

 Slight change to label widget displaying status.

 windt@astro.columbia.edu

 DLW, May 2013 - Improved permission error handling.

 davidwindt@gmail.com

(See ./plot_print.pro)

PLOT_TEXT

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 PLOT_TEXT

 PURPOSE:

 Add text in a box to a plot. The text is located in one
 of 12 possible positions (i.e., upper left corner, lower
 right corner, etc.)

 CALLING SEQUENCE:

 PLOT_TEXT,TEXT_ARRAY[,POSITION=POSITION]

 INPUTS:

 TEXT_ARRAY - a string array of text

 KEYWORD PARAMETERS:

 POSITION - an integer, specifying the location of the text box:

 0: no text is drawn
 1: below plot, left
 2: below plot, center
 3: below plot, right
 4: lower left
 5: lower center
 6: lower right
 7: middle left
 8: middle center
 9: middle right
 10: upper left
 11: upper center
 12: upper right

 if not specified, default position=10

 CHARSIZE - the charsize value for the text

 COLOR - an array of colors to be used for each line of text

 NOBOX - set to inhibit drawing a box around the text

 BOXPADX - padding in character units, between text and box,
 in x. default=2.0

 BOXPADY - padding in character units, between text and box,
 in y. default=0.5

 FONT - Set to an integer from 3 to 20, corresponding to the
 Hershey vector font sets, referring to the font used
 to display the text. If a font other than !3 is used
 in the text string, then FONT should be set
 accordingly. (Any font commands embedded in the text
 string are ignored.)

 BOXFUDGEX - A scaling factor, used to fudge the width of the
 box surrounding the text. Default=1.0.

 BOXCOLOR - set to the color index used to draw the box.
 Default is !P.COLOR.

 BOXFILL - set to the color index used to fill the box. Omit,
 or set to -1 for no fill. No effect if NOBOX=1.

 Plus all valid graphics keywords for xyouts and plots

 RESTRICTIONS:

 When specifying a position of 1,2 or 3, you'll need to (a) use
 the same charsize value for the plot and for the plot_text,
 and (b) draw the plot with an extra ymargin(0). i.e., set
 ymargin(0)=7+n_elements(text_array)

 MODIFICATION HISTORY:

 David L. Windt, Bell Labs, March 1997
 windt@bell-labs.com

 May 2011, dlw:

 Now using WIDTH keyword from XYOUTS to do an even better job of
 drawing the box.

 October, 1997, dlw:

 Now using the TEXT_WIDTH function, in order to do a somewhat
 better job of drawing the box around the text.

 NONPRINTER_SCALE keyword parameter is now obsolete.

 BOXFUDGEX keyword parameter added.

 May 2013 - Added BOXCOLOR and BOXFILL.
 DLW, davidwindt@gmail.com

(See ./plot_text.pro)

PROFILE_NI

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 PROFILE_NI

 PURPOSE:

 Extract a profile from an image noninteractively.

 CALLING SEQUENCE:

 Result = PROFILE_NI(IMAGE,COORDS)

 INPUTS:

 IMAGE - data array. May be any type except complex.

 COORDS - 2 x 2 array of x and y coordinate of profile endpoints,
 [[X0,Y0],[X1,Y1]]

 KEYWORD PARAMETERS:

 XSTART, YSTART - starting (x,y) location of lower left corner
 of image.

 OUTPUTS:

 Result = 1-D array of image values along the line from

 MODIFICATION HISTORY:

 Adapted from PROFILE

 D. L. Windt, Bell Laboratories, November 1991.
 windt@bell-labs.com

(See ./profile_ni.pro)

PTRS_NEW

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 PTRS_NEW

 PURPOSE:

 This function will make a copy of the passed variable, which
 can be of any type. However if it's a pointer, an array of
 pointers, a structure, or any array of structures, then the
 entire hierarchy will be searched until all pointers are
 replaced with new pointers, so that the copy will not point to
 anything that the original passed variable points to.

 CALLING SEQUENCE:

 DEST=PTRS_NEW(SOURCE)

 INPUTS:

 SOURCE: Variable of any type.

 OUTPUTS:

 DEST: the destination variable, which is an exact copy of the
 source variable SOURCE, except that all pointers contained in
 the returned variable will be new.

 MODIFICATION HISTORY:

 David L. Windt, Reflective X-ray Optics, davidwindt@gmail.com
 14-May-2013

(See ./ptrs_new.pro)

PWD

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 PWD

 CATEGORY:

 Stupid little convenience routines.

 PURPOSE:

 Print the current directory, like the Unix 'pwd' command.

 CALLING SEQUENCE:

 PWD
 MODIFICATION HISTORY:

 David L. Windt, Bell Labs, February 1998
 windt@bell-labs.com

(See ./pwd.pro)

RECROI

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 RECROI

 PURPOSE:

 Define a rectangular region of interest of an image using the
 image display system and the cursor/mouse.

 CATEGORY:

 Image processing.

 CALLING SEQUENCE:

 Result=RECROI(SX,SY[,XVERTS,YVERTS])

 INPUTS:

 SX, SY = size of image, in pixels.

 KEYWORD PARAMETERS:

 X0, Y0 - coordinate of lower left corner of image on display.
 if omitted, (0,0) is assumed. Screen device
 coordinates.

 ZOOM - zoom factor, if omitted, 1 is assumed.

 XAXIS, YAXIS - optional 1-d arrays corresponding to the x and
 y scales of image. Needed only if XROI and/or
 YROI are specified.

 XROI, YROI - optional output vectors associated with the
 digitized rectangular region of interest. XAXIS
 and YAXIS keyword parameters must be supplied.

 OUTPUTS:

 Result = vector of subscripts of pixels inside the region.

 OPTIONAL OUTPUTS:

 XVERTS, YVERTS - optional output parameters which will contain
 the vertices enclosing the region. Setting
 NOREGION inhibits the return of the pixel
 subscripts.

 COMMON BLOCKS:

 Colors is used to obtain the current color table which is modified
 and then restored.

 SIDE EFFECTS:

 For this implementation, bit 0 of each pixel is used to draw ; the
 outline of the region. You WILL have to change this to fit
 the capabilities and procedures of your display. ; The lowest
 bit in which the write mask is enabled is changed.

 PROCEDURE:

 The write mask for the display is set so that only bit 0 may be
 written. Bit 0 is erased for all pixels. The color tables
 are loaded with odd values complemented, even values
 unchanged. A message is printed, assuming a mouse, indicating

 the effect of the three buttons. The operator marks opposite
 corners of the rectangle.

 MODIFICATION HISTORY:

 Adapted from DEFROI

 D. L. Windt, Bell Laboratories, November 1989
 windt@bell-labs.com

(See ./recroi.pro)

RECTANGLE

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 RECTANGLE

 PURPOSE:

 Draw a rectangle on a plot.

 CALLING SEQUENCE:

 RECTANGLE,X0,Y0,XLENGTH,YLENGTH

 INPUTS:

 X0, Y0 - Points specifying a corner of the rectangle.

 XLENGTH, YLENGTH - the lengths of the sides of the rectangle,
 in data coords.

 KEYWORD PARAMETERS:

 FILL = set to fill rectangle.

 FCOLOR = fill color.

 Graphics keywords: CHARSIZE,COLOR,LINESTYLE,NOCLIP,
 T3D,THICK,Z,LINE_FILL,ORIENTATION,DEVICE

 MODIFICATION HISTORY:

 D. L. Windt, Bell Laboratories, September 1990.

 Added device keyword, January 1992.

 windt@bell-labs.com

(See ./rectangle.pro)

REC_IMAGE

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 REC_IMAGE

 PURPOSE:

 Extract a rectangular portion of a previously displayed image.

 CALLING SEQUENCE:

 SMALL_IMAGE=REC_IMAGE(BIG_IMAGE)

 INPUTS:

 BIG_IMAGE = array containing original image

 OUTPUTS:

 SMALL_IMAGE = portion of big_image

 PROCEDURE:

 RECROI is used to digitize a portion of the image.

 MODIFICATION HISTORY:

 David L. Windt, Bell Labs, Feb. 1992.
 windt@bell-labs.com

(See ./rec_image.pro)

ROI_WIDTH

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 ROI_WIDTH

 PURPOSE:

 Measure the width of a region of curve that has been previously

 plotted. The region is defined to be within ymin and ymax of a
 digitized region of the curve.

 CALLING SEQUENCE:

 Result=ROI_WIDTH(XAXIS,YAXIS)

 INPUTS:

 XAXIS - the x axis variable which has been plotted.

 YAXIS - the y axis variable which has been plotted.

 KEYWORD PARAMETERS:

 YMIN - minimum value of digitized region of interest.

 YMAX - maximum value of digitized region of interest.

 NOHIGHLIGHT - set to inhibit highlighting the region of
 interest.

 H_COLOR - the color index for highlighting the region of
 interest. Default is 7 (Yellow).

 H_THICK - the thickness for highlighting the region of
 interest.

 NOLABEL - set to inhibit labelling fwhm.

 MANUAL - set to disable automatic location selection for
 labels.

 L_HEADER - string specifying the label header. Default-''.

 L_COLOR - color index for the label.

 L_FORMAT - format string for label (eg. '(f4.2)').

 UNITS - string specifying units along x axis.

 CHARSIZE - size of label text.

 PSYM - psym

 OUTPUTS:

 Result - the full-with-half-max of the region of interest of
 the curve, in x-axis data units.

 OPTIONAL OUTPUT PARAMETERS:

 ROI - the subscripts of the digitized region of interest.

 WIDTH_ROI - the subscripts of the region between the ymin and
 ymax points.

 LINE_PTS - a 4-element array containing the coordinates of the
 line drawn on the plot: [x0,x1,y0,y1]

 LABEL - the label for the plot.

 L_POS - a two element array containing the x,y coordinates of
 the label, in data coords.

 SIDE EFFECTS:

 TEK_COLOR is used to load in the tektronix colors.
 The region of interest of the curve is highlighted.
 The width is labelled.

 RESTRICTIONS:

 The data must be plotted prior to calling ROI_WIDTH

 PROCEDURE:

 The user is asked to digitize the endpoints of the
 region of interest with the mouse. The region is
 highlighted, and the width is labelled.

 MODIFICATION HISTORY:

 D. L. Windt, Bell Laboratories, October 1990.
 windt@bell-labs.com

(See ./roi_width.pro)

ROTATION

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 ROTATION

 PURPOSE:

 Rotate two vectors by a specified amount.

 CALLING SEQUENCE:

 ROTATION,X,Y,DEG,NX,NY

 INPUTS:

 X,Y :orignal data point pairs

 DEG :degrees to rotate.

 OUTPUTS:

 Nx, Ny = rotated point pairs.

 MODIFICATION HISTORY:

 Jeff Bennett, U of Colorado

(See ./rotation.pro)

ROT_MAT

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 ROT_MAT

 PURPOSE:

 Return a 2D rotation matrix.

 CALLING SEQUENCE:

 Result = ROT_MAT(Angle)

 INPUTS:

 Angle - Rotation angle in degrees.

 OUTPUTS:

 Result = [[cos(Angle*!dtor),-sin(Angle*!dtor)],
 [sin(Angle*!dtor), cos(Angle*!dtor)]

 EXAMPLE:

 To rotate a vector X by an angle Theta:

 X=[0.1,0.9]
 X_=ROT_MAT(Theta)##X

 MODIFICATION HISTORY:

 David L. Windt, December 2003

 windt@astro.columbia.edu

(See ./rot_mat.pro)

RXO_COLOR

[Previous Routine] [Next Routine] [List of Routines]
 NAME:
 RXO_COLOR

 PURPOSE: Load a color table for the first 32 colors, exactly as the
 TEK_COLOR procedure does. However this procedure uses
 different colors for the top 16 color indices, presenting a
 broader choice of colors for plotting.

 CATEGORY:
 Graphics.

 CALLING SEQUENCE:
 RXO_COLOR [[, Start_index] , Ncolors]

 INPUTS:
 Start_index = optional starting index of palette. If omitted,
 use 0.
 Ncolors = Number of colors to load. 32 is the max and the default.
 KEYWORD PARAMETERS:
 None.
 OUTPUTS:
 No explicit outputs.
 COMMON BLOCKS:
 Colors.
 SIDE EFFECTS:
 Ncolors color indices, starting at Start_index are loaded with
 the Tektronix 4115 default color map.
 RESTRICTIONS:
 None.
 PROCEDURE:
 Just copy the colors. This table is useful for the
 display of graphics in that the colors are distinctive.

 Basic colors are: 0 - black, 1 - white, 2 - red, 3 - green,
 4 - blue, 5 - cyan, 6 - magenta, 7 - yellow, 8 - orange, etc.
 MODIFICATION HISTORY:
 DMS, Jan, 1989.
 DMS, June, 1992. Added colors common.
 DMS, Apr, 1993, Added start_index and ncolors.

 D.Windt, May 2013: same as TEK_COLOR, but top 16 colors are
 different.

(See ./rxo_color.pro)

SECONDS2CLOCK

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 SECONDS2CLOCK

 PURPOSE:

 Convert a time value from seconds to a string of the form
 "DAYS:HOURS:MINUTES:SECONDS.FRACTIONAL_SECONDS"

 CALLING SEQUENCE:

 Result = SECONDS2CLOCK(Time)

 INPUTS:

 Time - Time value in seconds.

 KEYWORDS:

 SECONDS_FORMAT = IDL format code used to display value of
 SECONDS.FRACTIONAL_SECONDS. Default is '(F4.1)'.

 OUTPUTS:

 This function returns a string constant.

 EXAMPLE:

 X=SECONDS2CLOCK(106272.)

 MODIFICATION HISTORY:

 David L. Windt, Columbia University, 10-Jul-2003
 windt@astro.columbia.edu

(See ./seconds2clock.pro)

SHIFT_PLOT

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 SHIFT_PLOT

 PURPOSE:

 Interactively slide a previously plotted array using the mouse.

 CALLING SEQUENCE:

 SHIFT_PLOT,X[,Y,SHIFT=SHIFT]

 INPUTS:

 X,Y - array variables

 KEYWORD PARAMETERS:

 Same as for oplot

 OPTIONAL OUTPUT PARAMETERS:

 SHIFT - the shift along the x-axis

 PROCEDURE:

 MENUS is used to get input. The previously plotted array is first
 erased, then oplot'ed, with the incremental shift.

 MODIFICATION HISTORY:

 David L. Windt, Bell Labs, February, 1990
 windt@bell-labs.com

(See ./shift_plot.pro)

SHOW_CT

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 SHOW_CT

 PURPOSE:

 Make a window and show the first 32 colors in the current
 color table.

 CALLING SEQUENCE:

 SHOW_CT

 MODIFICATION HISTORY:

 David L. Windt, Bell Labs, November 1989
 windt@bell-labs.com

 DLW, November, 1997 - Removed default window position values, so
 that the window is now visible on any

 size display.

(See ./show_ct.pro)

SINC

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 SINC

 PURPOSE:

 Function to return the value of the SINC function,
 i.e., sin(x)/x.

 CALLING SEQUENCE:

 Result = SINC(X)

 INPUTS:

 X - Input value. Scalar or array.

 OUTPUTS:

 Result - Value of SIN(X)/X.

 PROCEDURE:

 Straightforward; except Result is explicitly set to
 one when X=0.

 MODIFICATION HISTORY:

 David L. Windt, Bell Laboratories, May 1997

 March 1999:

 Returned X values are no longer changed when X=1.

 DLW (thanks to Paul Woodford.)

 windt@bell-labs.com

(See ./sinc.pro)

SINCSQUARE_FIT

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 SINCSQUARE_FIT

 PURPOSE:

 Fit y=f(x) where:
 F(x) = a0*(sin(a1*(x-a2))/(a1*(x-a2)))^2 + a3
 Estimate the parameters a0,a1,a2,a3 and then call curvefit.

 CALLING SEQUENCE:

 YFIT = SINC_FIT(X,Y,A)

 INPUTS:

 X - independent variable, must be a vector.

 Y - dependent variable, must have the same number of points as
 x.

 OUTPUTS:

 YFIT = fitted function.

 OPTIONAL OUTPUT PARAMETERS:

 A = Fit coefficients. A four element vector as described above.

 MODIFICATION HISTORY:

 Adapted from GAUSSFIT

 D. L. Windt, Bell Laboratories, March, 1990
 windt@bell-labs.com

(See ./sincsquare_fit.pro)

SMALL_WINDOW

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 SMALL_WINDOW

 PURPOSE:

 Make a 500x400 graphics window.

 CATEGORY:

 Stupid little convenience routines.

 CALLING SEQUENCE:

 SMALL_WINDOW [,WINDOW_NUM]

 OPTIONAL INPUT PARAMETERS:

 WINDOW_NUM - the window number.

 KEYWORD PARAMETERS:

 LAPTOP - set this to make a nice window (400x300) for a
 small-screened laptop

 MODIFICATION HISTORY:

 David L. Windt, Bell Laboratories, March 1990.
 windt@bell-labs.com

(See ./small_window.pro)

SP

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 SP

 PURPOSE:

 Execute SET_PLOT, and optionally some handy settings.

 CALLING SEQUENCE:

 SP[,DEVICE,N_PLOTS]

 OPTIONAL INPUTS:

 DEVICE = 0 for set_plot,'PS'
 1 for set_plot,'HP'
 2 for set_plot,'PCL'
 3 for set_plot,'X'
 4 for set_plot,'MAC'
 5 for set_plot,'WIN'
 6 for set_plot,'SUN'
 7 for set_plot,'TEK'

 8 for set_plot,'CGM'

 if DEVICE is not set, the graphics device will be set
 to the platform-dependent default.

 N_PLOTS = 1 for !p.multi=0
 2 for !p.multi=[0,1,2]
 3 for !p.multi=[0,1,3]
 4 for !p.multi=[0,2,2]

 KEYWORD PARAMETERS:

 SMALL - Set to make a small plot.

 LANDSCAPE - Set for landscape mode when device=0,1, or 2.

 FULL_PAGE - Set for full page plotting when device=0, 1,
 or 2. Only has an effect when in portrait mode
 (landscape=0) for PS and PCL devices.
 FULL_PAGE is set automatically if N_PLOTS is
 greater than 1.

 HARDWARE - Set for hardware fonts.

 FILE - Name of output file.

 ISOTROPIC - Set for isotropic (equal x and y) scaling.

 COLOR - Set to enable color for PS and PCL devices.

 PLOTSIZE - A four-element array specifying the
 [XSIZE,YSIZE,XOFFSET,YOFFSET] keywords (in
 INCHES) to the DEVICE procedure. If PLOTSIZE
 is set, then the SMALL and FULL_PAGE keywords
 are ignored. If PLOTSIZE is not set, then
 default values are used for these parameters
 that make decent-looking plots on 8-1/2 x 11"
 paper.

 MODIFICATION HISTORY:

 David L. Windt, Bell Labs November 1989
 Added DEVICE=4, November 1990.
 Added ISOTROPIC keyword, August 1991.
 Added COLOR keyword, Sept 1991.
 Added pcl support, completely changed device<->number mapping,
 and changed functionality of small/full_page/landscape/size
 keywords, May 1997.

 DLW, September 1997: On Unix platforms, if DEVICE is not
 set, the graphics device is set to 'X' if the IDL_DEVICE
 environment variable is not defined.

 DLW, January 1998: Added support for CGM graphics; this
 routine will do nothing more than issue the SET_PLOT,'CGM'
 command, but is included for compatability with the PLOT_PRINT
 routine. When using the CGM device, you will likely want to

 set the color table entry for !p.color to black; otherwise
 you'll get a white plot on a white background.

 Also, fixed bug that caused graphics output to anything but PS
 to fail! (Doh!)

 DLW, November 2002: Keywords to the DEVICE procedure are no
 longer abbreviated, for compatibility with IDL 5.5. Hey,
 kids, here's a little IDL programming tip: even though IDL
 will let you, never, ever abbreviate any keywords, at least if
 you want code that lasts!

 windt@astro.columbia.edu

(See ./sp.pro)

SQUARE_PLOT

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 SQUARE_PLOT

 PURPOSE:

 Define !p.region so plots come out with aspect ratio of 1.

 CALLING SEQUENCE:

 SQUARE_PLOT

 KEYWORD PARAMETERS:

 CENTER - set to center plot in window.

 MODIFICATION HISTORY:

 David L. Windt, Bell Laboratories, December 1991.
 windt@bell-labs.com

(See ./square_plot.pro)

SYM

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 SYM

 PURPOSE:

 This function provides a convenient way to utilize the
 USERSYM procedure to create an extended choice of plotting
 symbols, and is intended to be used directly with the PSYM
 keyword to PLOT, OPLOT, etc.

 CALLING SEQUENCE:

 Result=SYM(NUMBER)

 INPUTS:

 NUMBER - symbol number

 0 : dot if /FORCE_DOT is set; otherwise this is the
 same as setting PSYM=0.
 1 : filled circle
 2 : filled upward triangle
 3 : filled downward triangle
 4 : filled diamond
 5 : filled square
 6 : open circle
 7 : open upward triangle
 8 : open downward triangle
 9 : open diamond
 10 : open square
 11 : plus
 12 : X
 13 : star
 14 : filled rightfacing triangle
 15 : filled leftfacing triangle
 16 : open rightfacing triangle
 17 : open leftfacing triangle

 KEYWORD PARAMETERS:

 FORCE_DOT - When setting NUMBER=0, set this keyword to use the
 dot plotting symbol. Otherwise, setting NUMBER=0
 is the same as setting PSYM=0.
 OUTPUTS:

 The function returns the symbol number to be used with the
 PSYM keyword in the PLOT, OPLOT, etc. commands

 SIDE EFFECTS:

 The USERSYM procedure is used to create a symbol definition.

 EXAMPLE:

 To produce a plot using open circles as plotting symbols:

 PLOT,X,Y,PSYM=SYM(6)

 MODIFICATION HISTORY:

 Martin Schultz, Harvard University, 22 Aug 1997: VERSION 1.00

 D. Windt, windt@astro.columbia.edu

 January 2004: Now possible to use negative values of NUMBER,
 to make plots with lines connecting the symbols. Added the
 FORCE_DOT keyword.

(See ./sym.pro)

SYMBOLS

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 SYMBOLS

 PURPOSE:

 Create custom plotting symbols

 CALLING SEQUENCE:

 SYMBOLS,SYMBOL_NUMBER,SCALE

 INPUTS:
 SYMBOL_NUMBER:

 1 = open circle
 2 = filled circle
 3 = arrow pointing right
 4 = arrow pointing left
 5 = arrow pointing up
 6 = arrow pointing down
 7 = arrow pointing up and left (45 degrees)
 8 = arrow pointing down and left
 9 = arrow pointing down and right.
 10 = arrow pointing up and right.
 11 through 18 are bold versions of 3 through 10
 19 = horizontal line
 20 = box
 21 = diamond
 22 = triangle
 30 = filled box
 31 = filled diamond
 32 = filled triangle

 SCALE - size of symbols.

 KEYWORD PARAMETERS:

 COLOR - color of symbols

 SIDE EFFECTS:

 The desired symbol is stored in the user buffer and
 will be plotted if !P.PSYM = 8.

 MODIFICATION HISTORY:

 Jeff Bennett, U of Colorado, 198?

(See ./symbols.pro)

TEXT_WIDTH

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 TEXT_WIDTH

 PURPOSE:

 Function to determine the actual displayed width
 (approximately!) of a string of text, in normalized character
 units, accounting for the fact that non-equal spacing is used
 when such a string is displayed on a plot using XYOUTS.

 This function is used, for example, by the PLOT_TEXT and
 LEGEND procedures to ~correctly draw a box around displayed
 text.

 CALLING SEQUENCE:

 Result=TEXT_WIDTH(TEXT_STRING)

 INPUTS:

 TEXT_STRING - a string of text

 KEYWORD PARAMETERS:

 FONT - Set to an integer from 3 to 20 (corresponding to the
 Hershey vector font sets,) referring to the font that
 will be used to display the text. (Any font commands
 embedded in the text string are ignored.)

 RESTRICTIONS:

 This function hardly works perfectly, especially when the text
 string contains a mix of fonts; superscripts and subscripts

 will really mess things up as well. But it comes close in
 many instances.

 PROCEDURE:

 A table of normalized character widths (determined using the
 !3 font) is used to determine the width of the text string.
 In order to account for the use of IDL font manipulation
 commands, the '!' symbol and the character immediately
 following it are not counted, except for the case of two
 consecutive '!' symbols.

 EXAMPLE:

 Determine the width of a text string:

 width=TEXT_WIDTH('!3This is some displayed text',font=3)

 MODIFICATION HISTORY:

 David L. Windt, Bell Labs, October 1997
 windt@bell-labs.com

(See ./text_width.pro)

TRACK_PLOT

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 TRACK_PLOT

 PURPOSE:

 A procedure to plot X vs Y in a widget, track the cursor
 position, and interactively display the Y(X) value.

 CALLING SEQUENCE:

 TRACK_PLOT,X,Y

 INPUTS:

 X, Y - 1-D arrays

 KEYWORD PARAMETERS:

 WXSIZE - Draw widget X size, in pixels. (Default=640)

 WYSIZE - Draw widget Y size, in pixels. (Default=480)

 CROSSHAIR - Set this to display a crosshair at the current
 Y(X) value.

 plus all valid IDL PLOT keywords.

 RESTRICTIONS:

 Requires widgets. Requires use of the VALUE_TO_INDEX function
 in the windt library.

 EXAMPLE:

 Create some X,Y data and plot it using TRACK_PLOT:

 X=VECTOR(0.,100.,256)
 Y=SIN(X/5.)*EXP(-X/20.)
 TRACK_PLOT,X,Y

 MODIFICATION HISTORY:

 D. L. Windt, Bell Laboratories, August 1997
 windt@bell-labs.com

 March, 1998 - Added crosshair display option and CROSSHAIR
 keyword.

(See ./track_plot.pro)

TWOSCOMPLEMENT

[Previous Routine] [Next Routine] [List of Routines]
 NAME:
 TWOSCOMPLEMENT

 PURPOSE:
 Taking the Two's Complement of an integer

 CATEGORY:
 Math, Hardware, CAMAC

 CALLING SEQUENCE:
 twoscomp = TwosComplement(int)

 INPUT:
 int - raw encoder value (8, 16 or 32 bit integer)

 OUTPUT:
 twoscomp - Two's complement of input.

 KEYWORDS:
 Optional Input:

 NBITS - # of bits; throw away this bit if there is a carry after
 adding 1 to the complement. Default is determined by data
type.
 IfNeg - Only return the Two's Complement if value negative
 ALGORITHM:

 Taking the Two's Complement of a k-Digit Bitstring:

 1.Complement the bitstring; i.e., change all 0s to 1s and all 1s to 0s;
retain all leading 0s in your result.
 2.Add 1 to this binary number (if there is a carry of 1 into the (k+1)st
position, throw it away so that the
 result is still k-digits).
 3.The result from (2) is the two's complement of the bitstring

 COMMENT:
 Works in many cases, but sign bit may get extended in some
applications
 MODIFICATION HISTORY:
 5-Jun-00 WMD Added Nbits & IfNeg Keywords

(See ./twoscomplement.pro)

VALUE_TO_INDEX

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 VALUE_TO_INDEX

 PURPOSE:

 Given a (1D) ARRAY and a scalar VALUE, determine the array INDEX
 corresponding to the element of the array that is closest in
 magnitude to the specified value.

 CALLING SEQUENCE:

 Index=VALUE_TO_INDEX(ARRAY, VALUE)

 INPUTS:

 ARRAY = 1D array of values

 VALUE = scalar value

 EXAMPLE:

 ARRAY=findgen(100)/99.*5 ; create an array of 100 pts from 0 to 5.

 Index=VALUE_TO_INDEX(ARRAY,3.125) ; find the element of ARRAY whose value
 ; is closest to 3.125.

 In this case, Index=62 (i.e., ARRAY(62)=3.13131)

 MODIFICATION HISTORY:

 David L. Windt, Bell Labs, March 1997.

 May 1998 - Realized that this function is hardly necessary, as one
 can just make wise use of the min function and
 the !c system variable. Duh!

 windt@bell-labs.com

(See ./value_to_index.pro)

VECTOR

[Previous Routine] [Next Routine] [List of Routines]
 NAME:

 VECTOR

 PURPOSE:

 Make a vector of PTS points, with values ranging from MIN to
 MAX.

 CALLING SEQUENCE:

 Result = VECTOR(MIN,MAX,PTS)

 INPUTS:

 MIN - Starting value for vector.

 MAX - Ending value for vector.

 PTS - Number of points.

 KEYWORDS:

 LOGARITHMIC - set for logarithmic spacing between points.
 [MIN and MAX must be positive, i.e., gt 0]

 OUTPUTS:

 This function returns a vector of PTS points, ranging from MIN
 to MAX. The returned vector is of the same type as MIN/MAX.

 EXAMPLE:

 X=VECTOR(5.,100.,1000)

 This example returns a 1-D Floating point array X, made up of
 1000 points, ranging from 5. to 100.

 X=VECTOR(5.d,100.d,1000)

 This example returns a 1-D Double point array X, made up of
 1000 points, ranging from 5. to 100.

 MODIFICATION HISTORY:

 David L. Windt, Bell Labs, June 1993.

 March, 1997- modified code so returned vector is same type as
 MAX. added LOGARITHMIC keyword.

 May, 1998 - corrected a bug which occurred when LOGARITHMIC
 was set and PTS=1.

 October, 1998 - corrected a bug which, when LOGARITHMIC was
 set, had caused the log of MIN and MAX to be
 returned if these parameters are passed as
 named variables (rather than constants.)

 windt@bell-labs.com

(See ./vector.pro)

WRITE_MPEG

[Previous Routine] [Next Routine] [List of Routines]
 NAME:
 WRITE_MPEG

 PURPOSE:
 Write a sequence of images as an mpeg movie

 CATEGORY: utility

 CALLING SEQUENCE:
 WRITE_MPEG,'movie.mpg',ims

 INPUTS:
 ims: sequence of images as a 3D array with dimensions [sx, sy, nims]

 where sx = xsize of images
 sy = ysize of images
 nims = number of images

 OPTIONAL INPUTS:

 KEYWORD PARAMETERS:
 delaft: if set delete temporary array after movie was created
 you should actually always do it otherwise you get
 problems with permissions on multiuser machines (since
 /tmp normally has the sticky bit set)
 rep: if given means repeat every image 'rep' times
 (as a workaround to modify replay speed)

 OUTPUTS: None

 OPTIONAL OUTPUTS:

 COMMON BLOCKS:

 SIDE EFFECTS:
 creates some files in TMPDIR which are only removed when
 the DELAFT keyword is used

 RESTRICTIONS:
 depends on the program mpeg_encode from University of
 California, Berkeley, which must be installed in /usr/local/bin

 PROCEDURE:
 writes a parameter file based on the dimensions of the image
 array + the sequence of images in ppm format into a
 temporary directory; finally spawns mpeg_encode to build the
 movie

 EXAMPLE:

 MODIFICATION HISTORY:

 Mon Nov 18 13:13:53 1996, Christian Soeller
 <csoelle@mbcsg1.sghms.ac.uk>

 grabbed original from the net and made slight modifications

(See ./write_mpeg.pro)

XDISPLAYFILE

[Previous Routine] [Next Routine] [List of Routines]
 NAME:
 XDISPLAYFILE

 PURPOSE:
 Display an ASCII text file using widgets and the widget manager.

 CATEGORY:
 Widgets.

 CALLING SEQUENCE:
 XDISPLAYFILE, Filename

 INPUTS:
 Filename: A scalar string that contains the filename of the file
 to display. The filename can include a path to that file.

 KEYWORD PARAMETERS:
 BLOCK: Set this keyword to have XMANAGER block when this
 application is registered. By default the Xmanager
 keyword NO_BLOCK is set to 1 to provide access to the
 command line if active command line processing is
available.
 Note that setting BLOCK for this application will cause
 all widget applications to block, not only this
 application. For more information see the NO_BLOCK keyword
 to XMANAGER.

 DONE_BUTTON: the text to use for the Done button. If omitted,
 the text "Done with <filename>" is used.

 EDITABLE: Set this keyword to allow modifications to the text
 displayed in XDISPLAYFILE. Setting this keyword also
 adds a "Save" button in addition to the Done button.

 FONT: The name of the font to use. If omitted use the default
 font.
 GROUP: The widget ID of the group leader of the widget. If this
 keyword is specified, the death of the group leader results in
 the death of XDISPLAYFILE.

 HEIGHT: The number of text lines that the widget should display at one
 time. If this keyword is not specified, 24 lines is the
 default.

 TEXT: A string or string array to be displayed in the widget
 instead of the contents of a file. This keyword supercedes
 the FILENAME input parameter.

 TITLE: A string to use as the widget title rather than the file name
 or "XDisplayFile_RXO".

 WIDTH: The number of characters wide the widget should be. If this

 keyword is not specified, 80 characters is the default.

 WTEXT: Output parameter, the id of the text widget. This allows
 setting text selections and cursor positions programmatically.

 OUTPUTS:
 No explicit outputs. A file viewing widget is created.

 SIDE EFFECTS:
 Triggers the XMANAGER if it is not already in use.

 RESTRICTIONS:
 None.

 PROCEDURE:
 Open a file and create a widget to display its contents.

 MODIFICATION HISTORY:
 Written By Steve Richards, December 1990
 Graceful error recovery, DMS, Feb, 1992.
 12 Jan. 1994 - KDB
 If file was empty, program would crash. Fixed.
 4 Oct. 1994 MLR Fixed bug if /TEXT was present and /TITLE was not.
 2 jan 1997 DMS Added DONE_BUTTON keyword, made Done
 button align on left, removed padding.

 14-Oct-2003 D.L. Windt, The text widget can now be resized
 interactively by the user.

(See ./xdisplayfile_rxo.pro)

XWD2GIF

[Previous Routine] [List of Routines]
 NAME:

 XWD2GIF

 PURPOSE:

 Convert an XWD image file to a GIF image file.

 CALLING SEQUENCE:

 XWD2GIF[,FILE=FILE]

 KEYWORDS:

 FILE - The name of the XWD file. If the XWD file is called
 file.xwd, then the newly created gif file will be called
 file.gif.

 PROCEDURE:

 The procedure is just a simple interface to the READ_XWD and
 WRITE_GIF routines.

 MODIFICATION HISTORY:

 David L. Windt, Bell Labs, May 1998.

 windt@bell-labs.com

(See ./xwd2gif.pro)

	Extended IDL Help
	List of Routines
	Routine Descriptions
	ATANH
	ATOMIC_WEIGHT
	BESELI_FRACT
	BESELK_FRACT
	CHEM2LBL
	CHISQR
	CIRCLE_FIT
	CLEAR
	COM_FIND
	CONT_IMAGE
	CONT_IMAGE2
	CURVE_LABEL
	CW_BGROUP_RXO
	CW_CURVE_LABEL
	CW_DRAWSIZE
	CW_FIELD_RXO
	CW_FSLIDER_RXO
	CW_LEGEND_RXO
	CW_PLOTAXES
	CW_PLOTAXIS
	CW_PLOTLABEL
	CW_PLOTSTYLE
	CW_PLOTSTYLES
	CW_PLOTTITLE_CHAR
	CW_VECTOR
	DGTZ_IMAGE
	DGTZ_PLOT
	DIALOG
	DISPLAYED_TABLE_CELLS
	DISPLAY_FONT
	DLIB
	EDGE_FIND
	ELECTRON_MFP
	EPLOT
	EROM
	ERRORF_FIT
	EXPO_FIT
	FILE_DATE
	FINDEX
	FLOYD_SAMPLING
	FRACTAL_FIT
	FWHM
	GAUSSEXPO_FIT
	GAUSS_FIT
	GET_PEAK
	GET_PT
	GET_ROI
	GHOSTVIEW
	GREEK
	KAISER_BESSEL
	LEGEND_RXO
	LPRINT
	LS
	MAKE_LATEX_TBL
	MK_BITARRAY
	MK_NEW_PTRS
	MORE
	MPFIT
	OEPLOT
	PLOT_MOVIE
	PLOT_PRINT
	PLOT_TEXT
	PROFILE_NI
	PTRS_NEW
	PWD
	RECROI
	RECTANGLE
	REC_IMAGE
	ROI_WIDTH
	ROTATION
	ROT_MAT
	RXO_COLOR
	SECONDS2CLOCK
	SHIFT_PLOT
	SHOW_CT
	SINC
	SINCSQUARE_FIT
	SMALL_WINDOW
	SP
	SQUARE_PLOT
	SYM
	SYMBOLS
	TEXT_WIDTH
	TRACK_PLOT
	TWOSCOMPLEMENT
	VALUE_TO_INDEX
	VECTOR
	WRITE_MPEG
	XDISPLAYFILE
	XWD2GIF

