Extended IDL Help

This page was created by the IDL library routine mk_html_help. For more information
on this routine, refer to the IDL Online Help Navigator or type:

? mk_html_help
at the IDL command line prompt.

Last modified: Thu Sep 5 12:44:09 2013.

List of Routines

ATANH
ATOMIC_WEIGHT
BESELI_FRACT
BESELK_FRACT
CHEMZ2LBL
CHISQR
CIRCLE_FIT
CLEAR
COM_FIND
CONT_IMAGE
CONT_IMAGE?
CURVE_LABEL
CW_BGROUP_RXO
CW_CURVE_LABEL
CW_DRAWSIZE
CW_FIELD RXO
CW_FSLIDER_RXO
CW_LEGEND_RXO
CW_PLOTAXES
CW_PLOTAXIS
CW_PLOTLABEL
CW_PLOTSTYLE
CW_PLOTSTYLES
CW _PLOTTITLE CHAR
CW_VECTOR
DGTZ_IMAGE

DGTZ PLOT
DIALOG
DISPLAYED_TABLE_CELLS
DISPLAY_FONT
DLIB
EDGE_FIND
ELECTRON_MFP
EPLOT

EROM
ERRORF_FIT
EXPO_FIT
FILE_DATE
FINDEX
FLOYD_SAMPLING
FRACTAL_FIT
FWHM
GAUSSEXPO_FIT
GAUSS FIT
GET_PEAK
GET_PT
GET_ROI
GHOSTVIEW
GREEK
KAISER_BESSEL
LEGEND_RXO
LPRINT

LS
MAKE_LATEX_TBL
MK_BITARRAY
MK_NEW_PTRS
MORE

MPEIT

OEPLOT

PLOT MOVIE
PLOT PRINT
PLOT_TEXT
PROFILE NI
PTRS_NEW
PWD

RECROI
RECTANGLE

REC_IMAGE
ROI_WIDTH
ROTATION
ROT_MAT
RXO_COLOR
SECONDS2CLOCK
SHIFT_PLOT
SHOW_CT

SINC
SINCSQUARE_FIT
SMALL_WINDOW
SP
SQUARE_PLOT
SYM

SYMBOLS

TEXT WIDTH
TRACK_PLOT
TWOSCOMPLEMENT
VALUE _TO_INDEX
VECTOR
WRITE_MPEG
XDISPLAYFILE
XWD2GIF

Routine Descriptions
ATANH

[Next Routine] [List of Routines]
NAME -

ATANH
PURPOSE:

Inverse of TANH

atanh z = 1/2 In((1+2)/(1-2))
CALLING SEQUENCE:

Result=ATANH(Input)

MODIFICATION HISTORY:

David L. Windt, RXO, April 2013
davidwindt@gmail.com

(See ./atanh.pro)

ATOMIC_WEIGHT

[Previous Routine] [Next Routine] [List of Routines]
NAME -

ATOMIC_WEIGHT

PURPOSE:

Function to return the atomic weight of specified chemical
elements.

CALLING SEQUENCE:
Result=ATOMIC_WE IGHT (SYMBOL)

INPUTS:

SYMBOL - A string or string array specifying the name or names
of the chemical elements. Each element of SYMBOL must
be a one or two character string, corresponding to the
chemical symbol of the atom. Case is ignhored.

KEYWORD PARAMETERS:

ALL - Set this to return all 92 atomic weights and symbols.
OUTPUTS:

Result - The atomic weight of the specified atom or atoms.
RESTRICTIONS:

Only the first 92 elements are available.

PROCEDURE:

The mass of the proton is first calculated using quantum field
theory, and then...actually, it"s just a lookup table.

EXAMPLE:

Print the atomic weight of carbon:

print,ATOMIC_WEIGHT("C")
MODIFICATION HISTORY:
David L Windt, Bell Labs, May 1997
1-Sep-13: Returns a value of -1 if the value for SYMBOL is invalid.

davidwindt@gmail.com

(See ./atomic_weight.pro)

BESELI_FRACT

[Previous Routine] [Next Routine] [List of Routines]
NAME -

BESELI_ FRACT

PURPOSE:
This function returns the Modified Bessel Function of the
First Kind of Order N, for any N, i.e., including fractional
and negative orders.

CALLING SEQUENCE:

Result = BESELI_FRACT(X, N)

INPUTS:

X - The value for which the | Bessel function is required. X
must be greater than 0. The result will have the same
dimensions as X.

N - The Bessel function order.

PROCEDURE:

The series expansion

I_ n(X) = SUM_(k=0->inf) [(x/2)*(n+2k) / k! Gamma(n+k+1)]

is used, and is terminated when the k*"th term is less than .001.

MODIFICATION HISTORY:

David L. Windt, Bell Laboratories, June 1993
windt@bell-labs.com

(See ./beseli_fract.pro)

BESELK_FRACT

[Previous Routine] [Next Routine] [List of Routines]
NAME -

BESELK FRACT

PURPOSE:
This function returns the Modified Besel Function of the Second
Kind of order N, for any N, i.e., including fractional and
negative orders.

CALLING SEQUENCE:

Result = BESELK_FRACT(X, N)

INPUTS:

X - The value for which the K Bessel function is required. X
must be greater than 0. The result will have the same
dimensions as X.

N - The Bessel function order.

PROCEDURE:
This function uses the BESELI_FRACT function:
Results=(BESELI_FRACT(X,-N)-BESELI_FRACT(X,B))*IP1/2_/SIN(N*IPI)
MODIFICATION HISTORY:

David L. Windt, Bell Laboratories, June 1993
windt@bell-labs.com

(See ./beselk_fract.pro)

CHEMZ2ZLBL

[Previous Routine] [Next Routine] [List of Routines]
NAME -

CHEM2LBL

PURPOSE:

Convert a “chemical name®", i.e. a string containing characters
and numbers - H20, for example - into a string containing
formatting commands so that the numbers become subscripts when
using the result in IDL graphics.

For example: "H20" would come back as "H!d2In0O".

CALLING SEQUENCE:
Result = CHEM2LBL(CHEMICAL)
INPUTS:
CHEMICAL - a string or string array specifying the chemical name(s).
KEYWORD PARAMETERS:
NOREFERENCE - if this keyword is set, text following an
underscore character in CHEMICAL will be
ignored. The default behavior is that
any text following an underscore character
will be surrounded by brackets (i.e. < >)

and subscripted. For example, "Si02_tetragonal"
will be returned as "InSiO!d2 <tetragonal>In"

MODIFICATION HISTORY:

David L. Windt, March 1997
windt@bell-labs.com

June 2013: CHEMICAL can now be a string array.
davidwindt@gmail.com

(See ./chem2Ibl.pro)

CHISOR

[Previous Routine] [Next Routine] [List of Routines]
NAME -

CHISQR

PURPOSE:

Compute the Chi Square statistic of a function and a Fit
to the function.

CALLING SEQUENCE:

Result=CHISQR(Y,SIGMA_Y,YFIT)

INPUTS:
Y - Input array.
SIGMA_Y - Uncertainty in Y.
YFIT - Fit to Y.

PROCEDURE:

CHISQR=TOTAL((Y-YFIT)"2/SIGMAY"2)
MODIFICATION HISTORY:

David L. Windt, Bell Labs, November 1989
windt@bell-labs.com

(See ./chisqr.pro)

CIRCLE_FIT

[Previous Routine] [Next Routine] [List of Routines]
NAME -

CIRCLE_FIT
PURPOSE:
Fit y=F(xX) where:
F(xX) = yc+SQRT(r"2-(x-xc)”"2)
(xc,yc)=circle center, r=circle radius
CALLING SEQUENCE:
YFIT = CIRCLE_FIT(X,Y,A)
INPUTS:

X - independent variable, must be a vector.

Y - dependent variable, must have the same number of points ;
as X.

A - initial guess at fit coefficienct [xc, yc, r]
OUTPUTS:
YFIT - fitted function.

OPTIONAL OUTPUT PARAMETERS:

A - Fit coefficients. a three element vector containing Xxc,
yc, and r.

MODIFICATION HISTORY:
Adapted from GAUSSFIT

D. L. Windt, davidwindt@gmail.com
Aug 2010

(See ./circle_fit.pro)

CLEAR

[Previous Routine] [Next Routine] [List of Routines]
NAME -

CLEAR
CATEGORY:
Stupid little convenience routines.
PURPOSE:
Clear the screen, just like the Unix command.
CALLING SEQUENCE:
CLEAR
RESTRICTIONS:
Only works on Unix platforms.
MODIFICATION HISTORY:

David L. Windt, Bell Labs, November 1989
windt@bel l-labs.com

(See ./clear.pro)

COM_FIND

[Previous Routine] [Next Routine] [List of Routines]
NAME -

COM_FIND
PURPOSE:
Return the "center-of-mass®" of the supplied data array.
CALLING SEQUENCE:
Result = COM_FIND(X,Y)
INPUTS:
X, Y - 1D data arrays.
OUTPUTS:
Result = The X value corresponding to the center of mass,

i.e., the X value that divides the integral of Y in half.
Specifically, if X _com is the center-of-mass value, then

Integral(Y)_from O to X com = Integral(Y)_ from X com to MAX(X)

KEYWORD PARAMETERS:

INTERPOLATE - Set this keyword to return a "floating-point*®
index instead of an integer value.

X_com=COM_FIND(X, Y,/ INTERPOLATE)
EXAMPLE:
Make some noisy data:

x=VECTOR(O. ,5. ,100)
y=SIN(x)+0.1*RANDOMN(seed, 100)

Determine the center of mass:

x_com=COM_FIND(y)
MODIFICATION HISTORY:

David L. Windt, December 2003

windt@astro.columbia.edu

(See ./com_find.pro)

CONT_IMAGE

[Previous Routine] [Next Routine] [List of Routines]

NAME:

CONT_IMAGE
PURPOSE:

Overlay an image and a contour plot.
CALLING SEQUENCE:

CONT_IMAGE, IMAGE[,X,Y]
INPUTS:

IMAGE - 2 dimensional array to display.
OPTIONAL INPUTS:

X - 1 dimensional array of x-axis values.

Y - 1 dimensional array of y-axis values.
KEYWORD PARAMETERS:

WINDOW_SCALE - Set to scale the window size to the image size,
otherwise the image size is scaled to the
window size. Ignored when outputting to
devices with scalable pixels.

ASPECT - Set to retain image®s aspect ratio. Assumes square
pixels. |ITf ASPECT is set, the aspect ratio is
retained.

INTERP - Set to bi-linear interpolate if Image is resampled.

NOCONTOUR - Set to just display the image with plot axes.

INVERT - Set to invert the image scale, ie image=255-image

TOP - The maximum value of the scaled image. If not set, then
it"s set to (!d.n_colors < 255)-1.

MIN_VALUE - The minimum value of IMAGE to be displayed.
MAX_VALUE - The maximum value of IMAGE to be displayed.
COLORBAR - Set to display a color bar alongside the image.

BAR_TITLE - A text string to be used as the colorbar title if
COLORBAR is set.

BAR_WIDTH - Width of the colorbar, in pixels. Default is 10
pixels for non-scalable pixel devices, or 2% of
the plot width for scalable pixel devices.

BAR_OFFSET - Offset spacing between plot and colorbar. Default
is 10.

NOAXIS - Set to inhibit drawing plot axes

NOSCALE - Set to inhibit scaling of input array.

NLEVELS - CONTOUR keyword.

MODIFICATION HISTORY:

Adapted (i.e. stolen) from IMAGE_CONT.

D. L. Windt, Bell Laboratories, Nov 1989.

April 1994:

Changed image scaling to go from 32 to 'd.n_colors, so that

TEK_COLOR can be called to use first 32 colors for other plotting.

Added _EXTRA keyword.

March 1998 - Added TOP, MIN_VALUE, MAX_VALUE, COLORBAR, and
BAR_TITLE keywords. Also fixed quite a few bugs.
Note that setting the XSTYLE, XTYPE, YSTYLE, and
YTYPE keywords has no effect: these parameters

are always set to 0,1,0, and 1, respectively.

August 1998 - Plots are now drawn properly when Ip.multi is
different from 0. Added BAR_OFFSET keyword.

windt@bell-labs.com

May 2011:

Changed scaling to go from 32 to !d.table_size-33
Added noaxis and noscale keywords

May 2013:
Added NLEVELS keyword, passed to CONTOUR

davidwindgt@gmail.com

(See ./cont_image.pro)

CONT_IMAGE2

[Previous Routine] [Next Routine] [List of Routines]
NAME -

CONT__IMAGE2
PURPOSE:

Display an image and overlayer the contours from a second image.

CALLING SEQUENCE:
CONT_IMAGE2, IMAGE1, IMAGE2, X, Y
INPUTS:

IMAGE1

Image to display.
IMAGE2 = Image from which contours are drawn.
KEYWORD PARAMETERS:
WINDOW_SCALE = set to scale the window size to the image size,
otherwise the image size is scaled to the window size.
Ignored when outputting to devices with scalable pixels.
ASPECT = set to retain image"s aspect ratio. Assumes square
pixels. 1T /WINDOW_SCALE is set, the aspect ratio is
retained.
INTERP = set to bi-linear interpolate if image is resampled.
Plus IDL graphics keywords: XTITLE, YTITLE, SUBTITLE, TITLE
PROCEDURE:

IT the device has scalable pixels then the image is written over the
plot window.

MODIFICATION HISTORY:
Adapted (i.e. stolen) from IMAGE_CONT
D. L. Windt, Bell Laboratories, June 1991.
April 1994:
Changed image scaling to go from 32 to !d.n_colors, so that
TEK _COLOR can be called to use first 32 colors for other plotting.
Added EXTRA keyword.

windt@bell-labs.com

(See ./cont_image2.pro)

CURVE_LABEL

[Previous Routine] [Next Routine] [List of Routines]
NAME -
CURVE_ LABEL

PURPOSE:

Draw labels close to one or more (up to 30) curves that have
been previously plotted.

CALLING SEQUENCE:

CURVE_LABEL,X,Y1,[Y2,Y3,Y4,Y5],LABELS=LABELS, $
[COLOR=COLOR, XPOSITION=XPOSITION, YOFFSET=YOFFSET]

INPUTS:
X - xaxis vector (1D array)
Y1 - 1st y axis vector to be labelled.

OPTIONAL INPUTS:
Y2 - 2nd y axis vector to be labelled.
Y3 - 3rd y axis vector to be labelled.
-...etc....

KEYWORD PARAMETERS:

LABELS - String array of labels. The size of the LABELS array
must match the number of y variables passed. This
keyword is required.

XPOSITION - A scalar variable specifying where along the x
axis the labels are to be drawn, in normal
coordinates. Default = 0.25. Unless the
NO_REPOSITION keyword is set, this might get
changed if the procedure determines that the
labels are too close together when drawing
multiple labels. Setting XPOSITION to -1
will inhibit drawing the curve label altogether.

YOFFSET - A scalar specifying the distance in Y between the
labels and the curves, in normal
coordinates. Default = 0.01

NO_REPOSITION - Set this to inhibit moving the label positions
if the labels are too close together when
drawing multiple labels.

COLOR - Integer array of color indices for the labels.

_EXTRA - The idl _EXTRA keyword, for additional graphics
keywords to the XYOUTS procedure.

PROCEDURE:
All labels are lined up at one point along the xaxis. The
procedure will try to find a position along the xaxis for
which the labels are not too close to each other. |If it fails

at this, it will just stick the labels at x=0.25 (normal).

EXAMPLE:

To label a plot containing three curves, try something like
this:

plot,x,yl,/nodata
oplot,x,yl,color=2
oplot,x,y2,color=3
oplot,x,y3,color=4
curve_label ,x,yl,y2,y3,labels=["Y1","Y2","Y3"],color=[2,3,4]

MODIFICATION HISTORY:

David L. Windt, Bell Labs, March, 1997.
windt@bell-labs.com

February, 1998 - Added the ability to inhibit labelling
the curve by specifying a value of -1 for XPOSITION.

(See ./curve_label.pro)

CW_BGROUP_RXO

[Previous Routine] [Next Routine] [List of Routines]
NAME -
CW_BGROUP_RXO

PURPOSE:
CW_BGROUP_RXO is a compound widget that simplifies creating
a base of buttons. It handles the details of creating the
proper base (standard, exclusive, or non-exclusive) and filling
in the desired buttons. Events for the individual buttons are
handled transparently, and a CW_BGROUP_RXO event returned. This
event can return any one of the following:

- The Index of the button within the base.

The widget 1D of the button.

The name of the button.

An arbitrary value taken from an array of User values.

CATEGORY:
Compound widgets.

CALLING SEQUENCE:
Widget = CW_BGROUP_RXO(Parent, Names)

To get or set the value of a CW_BGROUP_RXO, use the GET_VALUE and
SET_VALUE keywords to WIDGET_CONTROL. The value of a CW_BGROUP_RXO
is:

normal None
exclusive Index of currently set button

non-exclusive Vector indicating the position
of each button (1-set, O-unset)

INPUTS:
Parent: The 1D of the parent widget.
Names: A string array, containing one string per button,
giving the name of each button.

KEYWORD PARAMETERS:

BUTTON_UVALUE: An array of user values to be associated with
each button and returned in the event structure.

COLUMN: Buttons will be arranged in the number of columns
specified by this keyword.
EVENT_FUNCT: The name of an optional user-supplied event function

for buttons. This function is called with the return
value structure whenever a button is pressed, and
follows the conventions for user-written event
functions.

EXCLUSIVE: Buttons will be placed in an exclusive base, with
only one button allowed to be selected at a time.

FONT: The name of the font to be used for the button
titles. IT this keyword is not specified, the default
font iIs used.

FRAME : Specifies the width of the frame to be drawn around
the base.

GRID: Buttons will be arranged on a uniform grid.

IDS: A named variable into which the button IDs will be

stored, as a longword vector.
LABEL LEFT: Creates a text label to the left of the buttons.
LABEL_TOP: Creates a text label above the buttons.

MAP: ITf set, the base will be mapped when the widget
is realized (the default).
NONEXCLUSIVE: Buttons will be placed in an non-exclusive base.

The buttons will be independent.
NO_RELEASE: If set, button release events will not be returned.
RETURN_ID: If set, the VALUE field of returned events will be
the widget ID of the button.
RETURN__INDEX: If set, the VALUE field of returned events will be
the zero-based index of the button within the base.
THIS 1S THE DEFAULT.

RETURN_NAME: ITf set, the VALUE field of returned events will be
the name of the button within the base.

ROW: Buttons will be arranged in the number of rows
specified by this keyword.

SCROLL: IT set, the base will include scroll bars to allow

viewing a large base through a smaller viewport.
SET_VALUE: The initial value of the buttons. This is equivalent
to the later statement:

WIDGET_CONTROL, widget, set value=value
SPACE: The space, in pixels, to be left around the edges

of a row or column major base. This keyword is
ignored if EXCLUSIVE or NONEXCLUSIVE are specified.

UVALUE: The user value to be associated with the widget.

UNAME : The user name to be associated with the widget.
XOFFSET: The X offset of the widget relative to its parent.
XPAD: The horizontal space, in pixels, between children

of a row or column major base. Ignored if EXCLUSIVE
or NONEXCLUSIVE are specified.

XSI1ZE: The width of the base.

X_SCROLL_SIZE: The width of the viewport if SCROLL is specified.
YOFFSET: The Y offset of the widget relative to its parent.
YPAD: The vertical space, in pixels, between children of

a row or column major base. Ignored if EXCLUSIVE
or NONEXCLUSIVE are specified.
YSIZE: The height of the base.
Y_SCROLL_SIZE: The height of the viewport if SCROLL is specified.

OUTPUTS:
The 1D of the created widget is returned.

SIDE EFFECTS:
This widget generates event structures with the following definition:

event = { ID:OL, TOP:OL, HANDLER:OL, SELECT:0, VALUE:O }

The SELECT field is passed through from the button event. VALUE is
either the INDEX, 1D, NAME, or BUTTON_UVALUE of the button,
depending on how the widget was created.

RESTRICTIONS:
Only buttons with textual names are handled by this widget.
Bitmaps are not understood.

MODIFICATION HISTORY:
15 June 1992, AB
7 April 1993, AB, Removed state caching.
6 Oct. 1994, KDB, Font keyword is not applied to the label.
10 FEB 1995, DJC fixed bad bug in event procedure, getting
id of stash widget.
11 April 1995, AB Removed Motif special cases.
Feb 2004 DLW, Added GRID keyword

May 2013 - Renamed CW_BGROUP_RXO, DLW, davidwindt@gmail.com

(See ./cw_bgroup_rxo.pro)

CW_CURVE_LABEL

[Previous Routine] [Next Routine] [List of Routines]
NAME -
CW_CURVE_LABEL

PURPOSE:

A compound widget used to select the position for a curve
label; this widget is intended to be used in conjunction with
the CURVE_LABEL procedure in this directory, in that this
widget lets the user select a value from a slider from O to
one, corresponding to the XPOSITION keyword in CURVE_LABEL.
CATEGORY:
Compound widgets.
CALLING SEQUENCE:
Result = CW_CURVE_LABEL (PARENT)
INPUTS:
PARENT - The ID of the parent widget.
KEYWORD PARAMETERS:
UVALUE - Supplies the user value for the widget.
VALUE - Initial value for the widget: a floating point between
0 and 1, corresponding to the XPOSITION keyword in
CURVE_LABEL .
TITLE - A title for the widget.

FRAME - Set to draw a frame around the widget; ignored if
PARENT is present.

FORMAT - Format string for CW_FSLIDER (default is F5.3)
FONT - Fonts to use for labels and buttons.
DONE - Set this to add a Done button, in addition to the
standard Apply button.
YPAD, SPACE - keywords to widget_base
OUTPUTS:
The 1D of the created widget is returned.
PROCEDURE/EXAMPLE :
A slider widget is created in which the user can select a
position value. By pressing the "Apply" button, an event is
returned, allowing the calling procedure to redraw the
curve label if desired.
This widget generates an event when the user presses the

Apply button or the Done button, If present. The EVENT.TAG
keyword will return either "APPLY" or "DONE"™ accordingly.

MODIFICATION HISTORY:

David L. Windt, Bell Labs, April 1997
windt@bell-labs.com

July 2003: Added YPAD, SPACE keywords

(See ./cw_curve_label.pro)

CW_DRAWSIZE

[Previous Routine] [Next Routine] [List of Routines]
NAME -

CW_DRAWSIZE
PURPOSE:
A compound widget used to change the size of an existing
draw widget. The widget contains fields for the X and Y
draw size (in pixels), an Apply button, and optionally a
Done button.
CATEGORY:
Compound widgets.
CALLING SEQUENCE:
Result = CW_DRAWSIZE(PARENT,DRAW_WIDGET)
INPUTS:
PARENT - The 1D of the parent widget.
DRAW_WIDGET - The id of the draw widget being resized.
KEYWORD PARAMETERS:
UVALUE - Supplies the user value for the widget.

FRAME - set to draw a frame around the widget; ignored if
PARENT is present.

ROW - set to place the two window size fields (X,y) in a row.
COLUMN - set to place the two window size fields (X,y) in a column.
FONT - fonts to use for labels and buttons.

DONE - set this to add a Done button, In addition to the standard
Apply button.

NO_RETURN - The default behavior is that the user must press
<return> after entering new values. Set this
keyword so that an event is returned even if the
user just changes a value and then moves the
cursor outside of the text entry area.

OUTPUTS:
The 1D of the created widget is returned.
PROCEDURE/EXAMPLE:

A widget is created in which the user can specify the X and Y

draw widget size in pixels. By pressing the "Apply" button,

the draw widget is resized, and an event is returned, allowing
the calling procedure to repaint the window if desired.

This widget generates an event when the user presses the

Apply button or the Done button, if present. The EVENT.TAG

keyword will return either "APPLY"™ or "DONE" accordingly.
MODIFICATION HISTORY:

David L. Windt, Bell Labs, March 1997
windt@bell-labs.com

DLW, June 1997, Added NO_RETURN keyword.
DLW, Sep 1997, Fixed bug that caused initial values of X and Y

pixel sizes to be displayed as floating point values rather
than integers.

(See ./cw_drawsize.pro)

CW _FIELD RXO

[Previous Routine] [Next Routine] [List of Routines]
NAME -
CW_FIELD_RXO

PURPOSE:
This widget cluster function manages a data entry field widget.
The field consists of a label and a text widget. CW_FIELD"s can
be string fields, integer fields or floating-point fields. The
default is an editable string field.

CATEGORY:
Widget Clusters.

CALLING SEQUENCE:
Result = CW_FIELD_RXO(Parent)

INPUTS:
Parent: The widget ID of the widget to be the field"s parent.

KEYWORD PARAMETERS:
TITLE: A string containing the text to be used as the label for the
field. The default is "Input Field:".

VALUE: The initial value in the text widget. This value is
automatically converted to the type set by the STRING,
INTEGER, and FLOATING keywords described below.

UVALUE: A user value to assign to the field cluster. This value
can be of any type.

UNAME : A user supplied string name to be stored in the
widget®s user name field.

FRAME: The width, in pixels, of a frame to be drawn around the
entire field cluster. The default is no frame.

RETURN_EVENTS: Set this keyword to make cluster return an event when a
<CR> is pressed in a text field. The default is
not to return events. Note that the value of the text field
is always returned when the WIDGET_CONTROL, Ffield, GET VALUE=X
command is used.

ALL_EVENTS: Like RETURN_EVENTS but return an event whenever the
contents of a text field have changed.

COLUMN: Set this keyword to center the label above the text field.
The default is to position the label to the left of the text
field.

ROW: Set this keyword to position the label to the left of the text
field. This i1s the default.

XSIZE: An explicit horizontal size (in characters) for the text input
area. The default is to let the window manager size the
widget. Using the XSIZE keyword is not recommended.

YSIZE: An explicit vertical size (in lines) for the text input
area. The default is 1.

STRING: Set this keyword to have the field accept only string values.
Numbers entered in the field are converted to their string
equivalents. This is the default.

FLOATING: Set this keyword to have the field accept only floating-point
values. Any number or string entered is converted to its
floating-point equivalent.

INTEGER: Set this keyword to have the field accept only integer values.
Any number or string entered is converted to its integer

equivalent (using FIX). For example, if 12.5 is entered in

this type of field, it is converted to 12.

LONG: Set this keyword to have the field accept only long integer
values. Any number or string entered is converted to its
long integer equivalent (using LONG).

FONT: A string containing the name of the X Windows font to use
for the TITLE of the fTield.

FIELDFONT: A string containing the name of the X Windows font to use
for the TEXT part of the field.

NOEDIT: Normally, the value in the text field can be edited. Set this
keyword to make the field non-editable.

NO_RETURN: The default behavior is that the user must press
<return> after entering new values. Set this
keyword so that an event is returned even if the
user just changes a value and then moves the
cursor outside of the text entry area.

TEXT_ID: The widget id of the text widget.
UNITS: A string to be placed after the text entry box.

RIGHT_ALIGN: Set this keyword for the field text to be right-aligned
within the field.

RESOURCE_NAME: The X windows system RESOURCE_NAME keyword (as in the
WIDGET_TEXT routine), which only applies to the text widget.

SPACE: Keyword to widget base.

XPAD: Keyword to widget_base.

YPAD: Keyword to widget base.

FORMAT: Valid format code for numerical field display. e.g., FORMAT="(F4.1)"

OUTPUTS:
This function returns the widget ID of the newly-created cluster.

COMMON BLOCKS:
None.

PROCEDURE:
Create the widgets, set up the appropriate event handlers, and return
the widget ID of the newly-created cluster.

EXAMPLE:
The code below creates a main base with a field cluster attached
to it. The cluster accepts string input, has the title "Name:", and
has a frame around it:

base = WIDGET_BASE()
field = CW_FIELD _RXO(base, TITLE="Name:", /FRAME)
WIDGET_CONTROL, base, /REALIZE

MODIFICATION HISTORY:

Written by: Keith R. Crosley June 1992
KRC, January 1993 -- Added support for LONG
integers.
AB, 7 April 1993, Removed state caching.
JWG, August 1993, Completely rewritten to make
use of improved TEXT widget functionality
ACY, 25 March, 1994, fix usage of FRAME keyword
KDB, May 1994, Initial value =0 would result
in a null text field. Fixed
keyword check.

CT, RSI, March 2001: Pass keywords directly into WIDGET BASE,
without assigning default values, since the defaults are
handled by WIDGET _BASE. Avoids assigning defaults if user passes
in undefined variables.

CT, RSI, July 2001: Fix bug in previous mod. If user passes in a
numeric VALUE but forgets to set the /FLOAT, we still need
to convert to a string before passing onto WIDGET_TEXT.

David L. Windt, Columbia Univ., April 2003

Modified CW_FIELD.PRO (IDL 5.6 version) to include NO_RETURN,
TEXT_ID, UNITS, RESOURCE_NAME, RIGHT_ALIGN, SPACE, XPAD and YPAD
keywords, and implemented workaround to deal with widget bug when
using the NO_RETURN keyword on some platforms.

May 2013 - Renamed CWFIELD RXO, DLW, davidwindt@gmail.com

(See ./cw_field _rxo.pro)

CW_FSLIDER_RXO

[Previous Routine] [Next Routine] [List of Routines]
NAME -
CW_FSLIDER_RXO

PURPOSE:
The standard slider provided by the WIDGET_SLIDER() function is
integer only. This compound widget provides a floating point
slider.

CATEGORY:
Compound widgets.

CALLING SEQUENCE:
widget = CW_FSLIDER_RXO(Parent)

INPUTS:
Parent: The ID of the parent widget.

KEYWORD PARAMETERS:
DRAG: Set this keyword to zero if events should only

be generated when the mouse is released. If it is
non-zero, events will be generated continuously
when the slider is adjusted. Note: On slow systems,
/DRAG performance can be inadequate. The default

is DRAG=0.
EDIT: Set this keyword to make the slider label be
editable. The default is EDIT=0.
EVENT_FUNC: The name of an optional user-supplied event function

for events. This function is called with the return
value structure whenever the slider value is changed, and
follows the conventions for user-written event
functions.

FORMAT : Provides the format in which the slider value is
displayed. This should be a format as accepted by
the STRING procedure. The default is FORMAT="(G13.6)"

FRAME : Set this keyword to have a frame drawn around the
widget. The default is FRAME=0.

MAXITMUM: The maximum value of the slider. The default is
MAXIMUM=100.

MINIMUM: The minimum value of the slider. The default is
MINIMUM=0.

SCROLL Sets the SCROLL keyword to the WIDGET_SLIDER underlying

this compound widget. Unlike WIDGET_SLIDER, the

value given to SCROLL is taken in the floating units

established by MAXIMUM and MINIMUM, and not in pixels.
SUPPRESS_VALUE: If true, the current slider value is not displayed.

The default is SUPPRESS VALUE=0.

TITLE: The title of slider. (The default is no title.)
UVALUE: The user value for the widget.

UNAME : The user name for the widget.

VALUE: The initial value of the slider

VERTICAL: IT set, the slider will be oriented vertically.
The default is horizontal.

XSIZE: For horizontal sliders, sets the length.
YSIZE: For vertical sliders, sets the height.
COMPACT : For horizontal sliders, the label is placed inline

with the value

OUTPUTS:
The 1D of the created widget is returned.

SIDE EFFECTS:
This widget generates event structures containing a field
named value when its selection thumb is moved. This is a
floating point value.

PROCEDURE :

WIDGET_CONTROL, id, SET VALUE=value can be used to change the
current value displayed by the widget. Optionally, the
value supplied to the SET_VALUE keyword can be a three
element vector consisting of [value, minimum, maximum]
in order to change the minimum and maximum values as
well as the slider value itself.

WIDGET_CONTROL, id, GET_VALUE=var can be used to obtain the current
value displayed by the widget. The maximum and minimum
values of the slider can also be obtained by calling the

FSLIDER_GET_VALUE function directly (rather than the standard
usage through the WIDGET_CONTROL interface) with the optional
keyword MINMAX:

sliderVals = FSLIDER_GET_VALUE(id, /MINMAX)
When called directly with the MINMAX keyword, the return
value of FSLIDER _GET _VALUE is a three element vector
containing [value, minimum, maximum].

MODIFICATION HISTORY:
April 2, 1992, SMR and AB
Based on the RGB code from XPALETTE.PRO, but extended to
support color systems other than RGB.
5 January 1993, Mark Rivers, Brookhaven National Labs
Added EDIT keyword.
7 April 1993, AB, Removed state caching.
28 July 1993, ACY, set_value: check labelid before setting text.
3 October 1995, AB, Added SCROLL keyword.
15 July 1998, ACY, Added ability to set and get minimum and maximum.
24 July 2000, KDB, Fixed scroll keyword modification.
March 2001, CT, RSI: Add double precision. Store value internally,
separate from either scrollbar value or text label value.

May 2011, D. Windt
Changed title layout

May 2013 - Renamed CW_FSLIDER_RXO, DLW, davidwindt@gmail.com

(See ./cw_fslider_rxo.pro)

CW_LEGEND_RXO

[Previous Routine] [Next Routine] [List of Routines]
NAME :

CW_LEGEND_RXO
PURPOSE:
A compound widget used to set values for the POSITION, NOBOX,
and BOXFILL keywords to the LEGEND_RXO procedure.
CATEGORY:
Compound widgets.
CALLING SEQUENCE:

Result = CW_LEGEND_RXO(PARENT,LABEL)

INPUTS:
PARENT - The 1D of the parent widget.

LABEL - a label to be drawn to the left (or top, for /column)
of the widget.

OPTIONAL KEYWORD PARAMETERS:

ADD_LABEL_CURVE_OPTION - set to add "Label Curves"™ as an
additional, last option in the list
of legend positions. (Return value
for Label Curves is 13.)

UVALUE - Supplies the user value for the widget.

VALUE - an array of initial values:
[POSITION, NOBOX, BOXFILL]

FRAME - set to draw a frame around the widget.
FONT - font keyword for labels etc.

XPAD, YPAD, SPACE - keywords to widget base

OUTPUTS:
The 1D of the created widget is returned.

COMMON BLOCKS:
CW_PLOTSTYLE: private common block containing color bitmaps
for "buttons® and menus, and arrays of valid values for thick,
psym and symsize.

RESTRICTIONS:
Uses the cglmage command in place of the tv command to display
images correctly on all devices. cglmage is part of the Coyote
Graphics System at www.idlcoyote.com.

PROCEDURE/EXAMPLE:

MODIFICATION HISTORY:

David L. Windt, Reflective X-ray Optics, May 2013
davidwindt@gmail .com.

(See ./cw_legend_rxo.pro)

CW_PLOTAXES

[Previous Routine] [Next Routine] [List of Routines]

NAME :
CW_PLOTAXES

PURPOSE :
A compound widget used to change the type, range and style
(bit 0) values of one or more plot axis structure variable. A
CW_PLOTAXIS (single axis) widget is created for each element
of the LABELS input parameter. The widget also includes an
Apply button, and (optionally) a Done button.

CATEGORY:

Compound widgets.
CALLING SEQUENCE:

Result = CW_PLOTAXES(PARENT,LABELS)
INPUTS:

PARENT - The ID of the parent widget.

LABELS - A string array of labels to be drawn to the left (or
top) of each of the CW_PLOTAXIS widgets.

OPTIONAL KEYWORD PARAMETERS:
UVALUE - Supplies the user value for the widget.
FRAME - Set to draw a frame around the widget.
VALUE - An (n,4) array of initial values, where
n = n_elements(LABELS), and each row has
the form VALUE(1,*)=[type,min,max,style]
FONT - Font keyword for labels etc.

ROW - Set to create a row of column-oriented CW_PLOTAXIS widgets.

COLUMN - Set to create a column of row-oriented CW_PLOTAXIS
widgets. (default)

DONE - Set this to add a Done button, in addition to the standard
Apply button.

AXIS_IDS - An array of widget id"s for the individual
CW_PLOTAXIS widgets.

X_SCROLL_SIZE, Y _SCROLL_SIZE - if these values are non-zero,
then the base widget which
holds the CW_PLOTAXIS widgets

will include scroll bars.

NO_RETURN - The default behavior is that the user must press
<return> after entering new values. Set this
keyword so that new values are accepted even if
the user just changes a value and then moves the
cursor outside of the text entry area.

XPAD, YPAD, SPACE - keywords to widget base
OUTPUTS:

The 1D of the created widget is returned.
PROCEDURE/EXAMPLE:

The idea is that this cw would be used in a widget intended
to allow the user to interactively adjust the settings for a
plot. For instance, you might have a menu item such as Plot
Options->Scaling, which would create a popup widget
containing a CW_PLOTAXES subwidget for the X and Y plot
variables. When the user makes changes to the Type, Range,
and Style values, and then presses the Apply button, the
popup widget event handler would re-draw the plot
accordingly.

This widget generates an event when the user presses the
Apply button or the Done button, if present. The EVENT.TAG
keyword will return either "APPLY"™ or "DONE" accordingly.
Example:

axes=CW_PLOTAXES(BASE, [*X","Y"],/DONE, $
VALUE=TRANSPOSE([[FLTARR(4)]., [FLTARR(D1D)

MODIFICATION HISTORY:

David L. Windt, Bell Labs, March 1997
windt@bell-labs.com

DLW, June 1997, Added NO_RETURN keyword.
July 2003: Added YPAD, SPACE keywords

January 2004: Added GRID keywords

(See ./cw_plotaxes.pro)

CW_PLOTAXIS

[Previous Routine] [Next Routine] [List of Routines]

NAME :
CW_PLOTAXIS

PURPOSE:

A compound widget used to change the type, range and style
(bit 0 only) values of plot axis structure variable.

CATEGORY:
Compound widgets.
CALLING SEQUENCE:
Result = CW_PLOTAXIS(PARENT,LABEL)
INPUTS:
PARENT - The 1D of the parent widget.
LABEL - a label to be drawn to the left of the widget.
OPTIONAL KEYWORD PARAMETERS:

UVALUE - Supplies the user value for the widget.

FRAME - set to draw a frame around the widget.

VALUE - a 4-element array of the form [type,min,max,style].
type and min,max correspond to the !axis.type and
lTaxis.range variables, and style is bit 0 of
lTaxis.style.

FONT - font keyword for labels etc.

ROW - set to orient the subwidgets In a row (default.)

COLUMN - set to orient the subwidgets in a column.

NO_RETURN - The default behavior is that the user must press

<return> after entering new values. Set this
keyword so that new values are accepted even if
the user just changes a value and then moves the
cursor outside of the text entry area.

XPAD, YPAD, SPACE - keywords to widget_base

GRID - Set this to also add widgets to set the grid (i.e.,
ticklen) and gridstyle values.

NOGRID - Set this to draw the grid widgets but never map
them. Useful when aligning multiple cw_plotaxis
widgets.

OUTPUTS:

The ID of the created widget is returned.
COMMON BLOCKS:

CW_PLOTSTYLE: private common block containing color bitmaps
for "buttons® and menus, and arrays of valid values for thick,
psym and symsize.

RESTRICTIONS:

Uses the cglmage command in place of the tv command to display
images correctly on all devices. cglmage is part of the Coyote
Graphics System at www.idlcoyote.com.

PROCEDURE/EXAMPLE:

The idea is that one or more instances of this cw would be
used in a widget intended to allow the user to interactively
adjust the settings for a plot. For instance, you might have
a menu item such as Plot Options->Scaling, which would create
a popup widget containing CW_PLOTAXIS subwidgets for the X and
Y plot variables. When the user makes changes to the Type,
Range, and Style values, the popup widget event handler would
re-draw the plot accordingly.

The widget returns events when any of it"s children generate
events. The returned event has the form

{CW_PLOTAXIS_EVENT, ID:id,TOP:top,HANDLER:handler,TAG:tag}
where TAG indicates which child widget generated the event:
possible values for EVENT.TAG are TYPE, MIN, MAX, and STYLE.
IT GRID is set, then GRID and GRIDSTYLE tags are possible as
well.

MODIFICATION HISTORY:

David L. Windt, Bell Labs, March 1997
windt@bell-labs.com

DLW, June 1997, Added NO_RETURN keyword.
DLW, November 1997, Text Ffields for Range values are now
updated when the user makes a change; the specified values are

converted to floating point.

January 2004: Added XPAD, YPAD, SPACE keywords; Changed widget
types. Added GRID keyword. Changed to double precision.

May 2013: Added color bitmaps for gridstyle options.

(See ./cw_plotaxis.pro)

CW_PLOTLABEL

[Previous Routine] [Next Routine] [List of Routines]

NAME :
CW_PLOTLABEL

PURPOSE:
A compound widget used to select the position for a plot label
or legend. This widget is intended to be used in conjunction
with the PLOT_TEXT or LEGEND procedures in this directory, in
that this widget lets the user select one of 13 pre-defined
positions corresponding to the POSITION keyword in PLOT_TEXT
and LEGEND.

CATEGORY:

Compound widgets.
CALLING SEQUENCE:
Result = CW_PLOTLABEL(PARENT)
INPUTS:
PARENT - The 1D of the parent widget.
KEYWORD PARAMETERS:
UVALUE - Supplies the user value for the widget.
VALUE - initial value for the widget: an integer between 0 and
12, corresponding to the POSITION keyword in plot_text
or legend.

TITLE - a title for the widget.

FRAME - set to draw a frame around the widget; ignored if
PARENT is present.

FONT - fonts to use for labels and buttons.

DONE - set this to add a Done button, in addition to the standard
Apply button.

NO_BELOW - set this to inhibit drawing the three buttons that
correspond to label positions below the plot, i.e.,
position values of 1, 2 and 3.

YPAD, SPACE - keywords to widget_base

OUTPUTS:

The 1D of the created widget is returned.

PROCEDURE/EXAMPLE:

A widget is created in which the user can select one of 13
position values. By pressing the "Apply" button, an event
is returned, allowing the calling procedure to redraw the

plot label or legend if desired.

This widget generates an event when the user presses the

Apply button or the Done button, if present. The EVENT.TAG

keyword will return either "APPLY"™ or "DONE™ accordingly.
MODIFICATION HISTORY:

David L. Windt, Bell Labs, April 1997
windt@bell-labs.com

July 2003: Added YPAD, SPACE keywords

(See ./cw_plotlabel.pro)

CW_PLOTSTYLE

[Previous Routine] [Next Routine] [List of Routines]

NAME:
CW_PLOTSTYLE

PURPOSE:
A compound widget used to set values for the graphics keywords
COLOR, LINESTYLE, THICK, PSYM, and SYMSIZE.

CATEGORY:

Compound widgets.
CALLING SEQUENCE:

Result = CW_PLOTSTYLE(PARENT,LABEL)
INPUTS:

PARENT - The ID of the parent widget.

LABEL - a label to be drawn to the left (or top, for /column)
of the widget.

OPTIONAL KEYWORD PARAMETERS:

UVALUE - Supplies the user value for the widget.

VALUE - an array of initial values:
[COLOR,LINESTYLE,THICK,PSYM,SYMSIZE]

FRAME - set to draw a frame around the widget.

FONT - font keyword for labels etc.

ROW - set to orient the subwidgets in a row (default.)
COLUMN - set to orient the subwidgets in a column.

NO_PSYM - set to omit the PSYM and SYMSIZE widgets. If NO_SYM
is set, then PSYM=0 and SYMSIZE=0 will be returned
when using WIDGET_CONTROL,GET_VALUE; PSYM and
SYMSIZE are ignored when using
WIDGET_CONTROL,SET_VALUE

XPAD, YPAD, SPACE - keywords to widget base

INIT_ONLY - set to create the 24-bit bitmaps and value arrays
that are stored in the private CW_PLOTSTYLE common
block listed below.

OUTPUTS:
The 1D of the created widget is returned.
COMMON BLOCKS:

CW_PLOTSTYLE: private common block containing color bitmaps
for "buttons® and menus, and arrays of valid values for thick,
psym and symsize.

RESTRICTIONS:

Uses the cglmage command in place of the tv command to display
images correctly on all devices. cglmage is part of the Coyote
Graphics System at www.idlcoyote.com.

PROCEDURE/EXAMPLE:

The idea is that one or more instances of this cw would be
used in a widget intended to allow the user to interactively
adjust the settings for a plot. For instance, you might have
a menu item such as Plot Options->Styles, which would create a
popup widget containing CW_PLOTSTYLE subwidgets for each of
the variables being plotted. When the user makes changes to
the Color, Linestyle, Thick, Psym, and Symsize values, the
popup widget event handler would re-draw the plot accordingly.

The user is presented with pulldown menus displaying:

- 32 color choices corresponding to the 1st 32 color table
entries.

- 6 linestyle choices (linestyle=0 to 5)

- 9 thickness choices (thick=1 to 9)

- 35 psym choices, corresponding to the 18 symbols obtained
using the SYM function with and without lines. Note that
the value of psym returned by this widget is intended
therefore to be used with the SYM function.

- 8 symsize choices (symsize=0.25 to 2.00, in 0.25 increments)

The widget returns events when any of it"s children generate
events. The returned event has the form
{CW_PLOTSTYLE_EVENT, ID:id,TOP:top,HANDLER:handler,TAG:tag}
where TAG indicates which child widget generated the event:
Possible values for EVENT.TAG are COLOR, LINESTYLE, THICK
PSYM, and SYSMSIZE.

MODIFICATION HISTORY:

David L. Windt, Bell Labs, March 1997
windt@bell-labs.com

January 2004: Added XPAD, YPAD, SPACE keywords, and added draw
widgets to display results.

May 2013: Re-written to use 24-bit color bitmap buttons and
pull-down menus in place of draw and droplist widgets. No
longer reliant on using TEK_COLOR; load whatever colors you
like in the First 32 color indices of the color table.

DLW, RXO, davidwindt@gmail.com.

(See ./cw_plotstyle.pro)

CW_PLOTSTYLES

[Previous Routine] [Next Routine] [List of Routines]
NAME -

CW_PLOTSTYLES
PURPOSE:

A compound widget used to set values for the graphics keywords
COLOR, LINESTYLE, THICK, PSYM, and SYMSIZE, for several plot
variables. A CW _PLOTSTYLE (single variable) widget is created
for each element of the LABELS input parameter. The widget
also includes an Apply button, and (optionally) a Done button.

CATEGORY:

Compound widgets.
CALLING SEQUENCE:

Result = CW_PLOTSTYLES(PARENT,LABEL)
INPUTS:

PARENT - The 1D of the parent widget.

LABELS - a string array of labels to be drawn to the left
(or top) of each of the CW_PLOTSTYLE widgets.

OPTIONAL KEYWORD PARAMETERS:
UVALUE - Supplies the user value for the widget.
VALUE - an (n,5) array of initial values, where
n = n_elements(LABELS), and each row has
the form VALUE(i,*)=[color,linestyle,thick,psym,symsize]
FRAME - set to draw a frame around the widget.
FONT - font keyword for labels etc.
ROW - set to create a row of column-oriented CW_PLOTSTYLE widgets.

COLUMN - set to create a column of row-oriented CW_PLOTSTYLE
widgets. (default)

DONE - set this to add a Done button, in addition to the standard
Apply button.

STYLE_IDS - an array of widget id"s for the individual
CW_PLOTSTYLE widgets.

X_SCROLL_SIZE, Y_SCROLL_SIZE - if these values are non-zero,
then the base widget which
holds the CW_PLOTSTYLE widgets
will include scroll bars.

XPAD, YPAD, SPACE - keywords to widget_ base

OUTPUTS:
The 1D of the created widget is returned.
PROCEDURE/EXAMPLE:

The idea is that this compound widget would be used in a
widget intended to allow the user to interactively adjust
the style settings for several variables contained in a
plot. For instance, you might have a menu item such as Plot
Options->Styles, which would create a popup widget

containing a CW_PLOTSTYLES subwidget, allowing the user to
affect each of the variables in the plot. When the user
makes changes to the Color, Linestyle, Thick, Psym, and
Symsize values, the popup widget event handler would re-draw
the plot accordingly.

This widget generates an event when the user presses the
Apply button or the Done button, if present. The EVENT.TAG
keyword will return either "APPLY"™ or "DONE"™ accordingly.
Example:

style=CW_PLOTSTYLE(BASE, [*A","B"],/DONE, $
VALUE=TRANSPOSE([[FLTARR(5)1, [FLTARR(5)11))

MODIFICATION HISTORY:

David L. Windt, Bell Labs, March 1997
windt@bell-labs.com

July 2003: Added XPAD, YPAD, SPACE keywords

(See ./cw_plotstyles.pro)

CW_PLOTTITLE_CHAR

[Previous Routine] [Next Routine] [List of Routines]

NAME :
CW_PLOTTITLE_CHAR

PURPOSE:
A compound widget used to set values for the graphics keywords
CHARSIZE, SUBTITLE, and TITLE. The widget contains fields for
these parameters, an Apply button, and (optionally) a Done
button.

CATEGORY:

Compound widgets.
CALLING SEQUENCE:

Result = CW_PLOTTITLE_CHAR(PARENT)
INPUTS:

PARENT - The 1D of the parent widget.

OPTIONAL KEYWORD PARAMETERS:

UVALUE - Supplies the user value for the widget.
FRAME - set to draw a frame around the widget.

VALUE - a structure, containing initial values for
the charsize, subtitle and title fields, of
the form {charsize:_float_, subtitle: _string_,
title:_string_}

FONT - font keyword for labels etc.

DONE - set this to add a Done button, in addition to the standard
Apply button.

IDS - widget ids of the title, subtitle, and charsize cw_field _rxo
widgets, and the apply button widget.

NO_RETURN - The default behavior is that the user must press
<return> after entering new values. Set this
keyword so that new values are accepted even if
the user just changes a value and then moves the
cursor outside of the text entry area.

YPAD, SPACE - keywords to widget_base
OUTPUTS:
The 1D of the created widget is returned.

PROCEDURE/EXAMPLE:

The idea is that this cw would be used in a widget intended
to allow the user to interactively adjust the settings for a
plot. For instance, you might have a menu item such as Plot
Options->Titles/Charsize, which would create a popup widget
containing a CW_PLOTTITLE_CHAR subwidget. When the user
makes changes to the CW_PLOTTITLE_CHAR fields, and then
presses the Apply button, the popup widget event handler
would re-draw the plot accordingly.

This widget generates an event when the user presses the
Apply button or the Done button, if present. The EVENT.TAG
keyword will return either "APPLY"™ or "DONE" accordingly.
Example:
title_char=CW_PLOTTITLE_CHAR(BASE,/DONE, $
VALUE={CHARSIZE: 1P_CHARSIZE ,SUBTITLE:!P_.SUBTITLE,
TITLE:'P.TITLE}
MODIFICATION HISTORY:

David L. Windt, Bell Labs, March 1997
windt@bell-labs.com

DLW, June 1997, Added NO_RETURN keyword.

July 2003: Added YPAD, SPACE keywords

(See ./cw_plottitle_char.pro)

[Previous Routine] [Next Routine] [List of Routines]

NAME :
CW_VECTOR

PURPOSE:
A compound widget used to get input necessary to create a
vector™, in the spirit of the VECTOR function in this
directory, i1.e, get input for the MIN, MAX, and PTS values.
The widget also lets the user specify the increment between
points, and whether the point spacing is linear or
logarithmic.

CATEGORY:

compound widgets.
CALLING SEQUENCE:
Result = CW_VECTOR(PARENT)
INPUTS:
PARENT - the id of the parent widget.
OPTIONAL KEYWORD PARAMETERS:
UVALUE - Supplies the user value for the widget.
FRAME - Set to draw a frame around the widget.
FONT - Font keyword for labels etc.
TITLE - A string used to label the widget
XSIZE - An explicit horizontal size (in characters) for the
min, max and increment input areas. The default is to
let the window manager size the widget.
NXSIZE - An explicit horizontal size (in characters) for the
pts field area. The default is to let the window

manager size the widget.

YSIZE - An explicit vertical size (in lines) for the text input

VALUE -

areas. The default is 1.

A structure used to set the initial value of the
widget, containing the following tags:

min, max, n and log - the parameters used to specify a
vector (see vector.pro)

format - a valid format command string used to format
the min, max, and increment values. a null
string will result in default floating-point
formatting.

nformat - a valid format command string to format the
pts field. a null string will result in
default integer formatting.

units - a string used to label the vector units. for
example, if the CW_VECTOR widget is being used
to get input to create a vector of lengths in
feet, then set value.units="feet"

uunits - a flag to indicate whether or not to actually
update the units label.

The same value structure is used with WIDGET_ CONTROL
to set the value of a CW _VECTOR, as in
WIDGET_CONTROL ,WIDGET ,SET_VALUE=VALUE

When using the GET_VALUE keyword with WIDGET_CONTROL,
however, the returned value is a structure with only
four tags: {min,max,pts,log}

MINRANGE, MAXRANGE - These keywords define the range of

acceptable values for the min and max
fields. If not set, any values for min
and max are allowed; otherwise, (min >
MINRANGE) < MAXRANGE, and (max > MINRANGE)
< MAXRANGE. None, one or both of these
keywords can be specified.

MINN - The minimum allowable value for n. default is 1.

NO_RETUR

SPACE -

XPAD, YP

OUTPUTS:

N - The default behavior is that the user must press
<return> after entering new values. Set this
keyword so that an event is returned even if the
user just changes a value and then moves the
cursor outside of the text entry area.

Keyword to all widget base"s used to create this
compound widget.

AD - keyword to widget_base

The id of the created widget is returned.
PROCEDURE:

Entering a value in the pts, min or max fields will set the
increment field. Entering a value in the increment field will
set the points field, and possibly the max field if the
increment doesn”"t divide evenly into the range specified by min
and max.

EXAMPLE:
Create a CW_VECTOR to get input to create a vector of lengths in
[feet]:

base=WIDGET_BASE()
length_widget=CW_VECTOR(BASE,VALUE={MIN:0.,MAX:10.,N:11,L0G:0, $
UNITS:"feet", $
FORMAT: " (F10.2)",
NFORMAT: " (14)",
UUNITS:1}
TITLE="LENGTHS")

Later, get the widget values and create the length vector:

WIDGET_CONTROL, length_widget,GET_VALUE=value
lengths=VECTOR(value.min,value._max,value.n, log=value.log)

MODIFICATION HISTORY:

David L. Windt, Bell Labs, March 1997
windt@bell-labs.com

DLW, June 1997, Added NO_RETURN keyword.

DLW, November 1997, Removed TRACKING keyword; corrected bug
that caused improper updates when NO_RETURN was set and the
user toggled between linear and logarithmic step sizes.

DLW, June 2003,

Implemented workaround to deal with widget bug when using the
NO_RETURN keyword on some platforms. Added SPACE keyword.

windt@astro.columbia.edu

February 2004: Added XPAD, YPAD, SPACE keywords

(See ./cw_vector.pro)

DGTZ_IMAGE

[Previous Routine] [Next Routine] [List of Routines]
NAME -

DGTZ__IMAGE
PURPOSE:
A widget application to interactively measure distances in an
image, either between two points, two horizontal lines, or two
vertical lines.
CATEGORY:
Image analysis
CALLING SEQUENCE:
DGTZ_IMAGE, IMAGE
INPUTS:
IMAGE = 2-D array containing image.
OUTPUTS:

The measured distances are listed on the widget, and
can also be saved to a text file (using MORE.)

KEYWORD PARAMETERS:

UNITS - String specifying units. Default is “units”.
COMMON BLOCKS:

dgtz_image, internal to this program.

MODIFICATION HISTORY:

David L. Windt, Bell Laboratories, May 1997
windt@bell-labs.com

Jul 1997: Corrected problem with widget labels

(See ./dgtz_image.pro)

DGTZ_PLOT

[Previous Routine] [Next Routine] [List of Routines]
NAME -

DGTZ_PLOT

PURPOSE:

CALLING

INPUTS:

KEYWORD

OUTPUTS:

A widget application used to extract (X,Y) values from an
image of plot. For example, you can use this program to
extract data from a published plot that you®ve scanned and
converted to an image array.
SEQUENCE:

DGTZ_PLOT, IMAGE , XRANGE , YRANGE

IMAGE - 2D array containing the plot image.

XRANGE - 2-element array specifying data range of X axis on
plot image.

YRANGE - 2-element array specifying data range of Y axis on
plot image.

PARAMETERS:

XTYPE - set if plot image has log x axis.

YTYPE

set if plot image has log x axis.

SXMAX - Visible size of draw widget along x direction, in pixels.
Default=512.

SYMAX - Visible size of draw widget along y direction, in pixels.
Default=512.

The digitized X,Y pairs are listed on a widget. You can
also save these data to a file (using MORE.)

COMMON BLOCKS:

DGTZ_PLOT internal to this procedure.

PROCEDURE:

The image of the plot is displayed on a widget, and the user
can digitize points which are converted to X,Y values. The
First step,however, is generally to calibrate the X and Y
axes; the endpoints of the specified axis are digitized,
after pressing the Calibrate X Axis or Calibrate Y Axis
button.

MODIFICATION HISTORY:

David L. Windt, Bell Laboratories, May, 1997

September, 1998 - Addex SXMAX and SYMAX keywords.

windt@bell-labs.com

(See ./dgtz_plot.pro)

[Previous Routine] [Next Routine] [List of Routines]

NAME :
DIALOG

PURPOSE:
A popup widget dialog box to get user input. Like
WIDGET_MESSAGE, which is better in some cases, but this widget
also includes fields and lists.

CATEGORY:

Widgets.
CALLING SEQUENCE:
Result = DIALOG([TEXT])
OPTIONAL INPUTS:
TEXT - The label seen by the user.
KEYWORD PARAMETERS:
There are 6 types of dialogs, each with unique behavior. With
each default dialog type are associated buttons; these buttons can
be overridden with the BUTTONS keyword, except in the case of the
LIST and FIELD dialogs.
One of the following six keywords MUST be set:

ERROR - Display an error message; default BUTTONS =
[“Abort®, "Continue”]

WARNING - Display a warning message. default BUTTONS = ["OK"]

INFO - Display an informational message;
default BUTTONS = ["Cancel®,"0K"]

QUESTION - Ask a question. default BUTTONS =
["Cancel™,"No","Yes"]

LIST - Get a selection from a list of choices. default
BUTTONS = ["Cancel”,"0K"] Must specify CHOICES = string

array of list choices.
Set the RETURN_INDEX keyword to cause the returned
value to be the zero-based index of the selected
list item.
FILTER can be set to allow the user to filter the list
of choices. When FILTER is set, the CHOICE_TYPES keyword
must also be supplied: CHOICE_TYPES = string array of
names, same length as the CHOICE array, that indicates
the type for each element of choice.
FILTER example:

FILTER=1

CHOICES=["Red", "Blue”,"Green”,"One","Two", "Three"]

CHOICE_TYPES=["Colors","Colors®, "Colors”, "Numbers”, "Numbers"”, "Numbers"].
When the user click the "Filter"™ button that will be
displayed, ; only Colors or Numbers will be listed,
depending on ; which type is selected from the
displayed droplist of choice types.

FIELD - Get user input, using CW_FIELD. default BUTTONS =
["Cancel”,"0K"]. FLOAT, INTEGER, LONG, and STRING
keywords apply here, as does the VALUE keyword to set
an initial value. Furthermore, the TEXT input
variable can be specified as a two-element array, in
which case the 2nd element will appear AFTER the
FIELD.

XSIZE - X-Size of FIELD

GROUP - Group leader keyword.

TITLE - title of popup widget.
OUTPUTS:

In the case of LIST or FIELD dialogs, this function returns

the selected list element or the user input, respectively.

Otherwise, this function returns the name of the pressed
button.

EXAMPLE:
1. Create a QUESTION DIALOG widget.
D = DIALOG(/QUESTION, "Do you want to continue?")
2. Get the user to enter a number.

D = DIALOG(/FLOAT,VALUE=3.14159, "Enter a new value for pi.")

3. Get the user to choose from a list of options.

D = DIALOG(/LIST,CHOICES=["Snoop", "Doggy ", "Dog"1)
MODIFICATION HISTORY:

David L. Windt, Bell Labs, March 1997

May 1997 - Added GROUP keyword, and modified use of MODAL
keyword to work with changes in IDL V5.0

Feb 2013 - Added 2-element TEXT parameter and XSIZE keyword for FIELD
dialogs

May 2013 - Added FILTER and CHOICE_TYPES keywords; removed
common block.

davidwindt@gmail.com

(See ./dialog.pro)

DISPLAYED _TABLE_CELLS

[Previous Routine] [Next Routine] [List of Routines]
NAME :

DISPLAYED_TABLE_CELLS
PURPOSE:

This function returns a four-element vector
CALLING SEQUENCE:

Result = DISPLAYED TABLE_CELLS(Table)
INPUTS:

Table - Widget id of the widget table.

OUTPUTS:

EXAMPLE:

MODIFICATION HISTORY:

Daryl Atencio, Research Systems, Oct 2003

(See ./displayed_table_cells.pro)

DISPLAY_FONT

[Previous Routine] [Next Routine] [List of Routines]
NAME -

DISPLAY_FONT
PURPOSE:

Display the font sets listed in the IDL User®s Guide.
CALLING SEQUENCE:

DISPLAY_FONT[,FONT_NUMBER , HARDWARE=HARDWARE]
OPTIONAL INPUT PARAMETERS:

FONT_NUMBER - The font index. IFf not supplied, the user is
prompted for input.

KEYWORD PARAMETERS:

HARDWARE - set to use the hardware fonts (i.e. PostScript for
Id.name="PS") set; otherwise Hershey sets are used.

MODIFICATION HISTORY:

D. L. Windt, Bell Laboratories, Sept. 1991
windt@bell-labs.com

(See ./display_font.pro)

DLIB

[Previous Routine] [Next Routine] [List of Routines]
NAME -

DLIB
PURPOSE:

A cheesy alias to DOC_LIBRARY, with a name that"s easier to
type.

CATEGORY:

Cheesy aliases.
MODIFICATION HISTORY:

D. L. Windt, Bell Labs, April 1990.
windt@bell-l1abs.com

(See ./dlib.pro)

EDGE_FIND

[Previous Routine] [Next Routine] [List of Routines]
NAME -

EDGE_FIND
PURPOSE:

Return the center of the rising or falling edge of the
supplied data array.

CALLING SEQUENCE:

Result = EDGE_FIND(X,Y[,/RISING][,/FALLING])
INPUTS:

X, Y - 1D data arrays.
OUTPUTS:

Result = The X value corresponding to the center of the rising
or falling edge of the Y data.

KEYWORD PARAMETERS:

RISING - Set this keyword to find the rising edge. This is the
default.

FALLING - Set this keyword to find the falling edge.
EXAMPLE:
Make some noisy data:

x=VECTOR(-8. ,8.,100)
y=ATAN(x)+. 1*RANDOMN(seed , 100)

Determine the rising edge:

X_edge=EDGE_FIND(y)

PROCEDURE:
Pretty cheesy: locate the first maximum (rising edge) or
minimum (falling edge) of the derivative of Y. There"s almost
certainly a better way...

MODIFICATION HISTORY:
David L. Windt, December 2003

windt@astro.columbia.edu

(See ./edge_find.pro)

ELECTRON_MFP

[Previous Routine] [Next Routine] [List of Routines]
NAME

ELECTRON_MFP
PURPOSE:

This function returns the elastic mean-free-path for electrons
of energy E, in a material having density N, and atomic number Z.

CALLING SEQUENCE:

Result = ELECTRON_MFP(Z,A,RHO,E)

INPUTS:

Z = Atomic number

A = Atomic weight (g/mole)

RHO = Density (g/cm3)

E = electron energy in keV
OUTPUTS:

This function returns the elastic mean-free-path, in angstroms.
EXAMPLE:

The elastic mean-free-path of tungsten (Z=74, Rho=19.35) at an
electron energy of 100 keV = ELECTRON_MFP(74,183.85,19.35,100.)

MODIFICATION HISTORY:

Written by D. L. Windt, Bell Labs, June 1994
windt@bell-labs.com

(See ./electron_mfp.pro)

EPLOT

[Previous Routine] [Next Routine] [List of Routines]
NAME -

EPLOT
PURPOSE:
Plot x vs y, with vertical error bars on y.
CALLING SEQUENCE:
EPLOT,Y,SIGY
EPLOT,X,Y,SIGY
EPLOT,Y,SIGY_UP,SIGY_DOWN
EPLOT,X,Y,SIGY_UP,SIGY_DOWN
INPUTS:
X, Y - 1-D arrays
SIGY - Uncertainty in Y, i.e. Y+/-SIGY

SIGY_UP, SIGY _DOWN - +/- uncertainties in Y, i.e.,
Y +SIGY_UP -SIGY_DOWN

KEYWORD PARAMETERS:
BARLINESTYLE = Linestyle for error bars.
plus all valid IDL plot keywords. Only the COLOR,
THICK, NOCLIP, and T3D keywords apply to the error
bars.
MODIFICATION HISTORY:
D. L. Windt, Bell Laboratories, November 1989
Replaced specific plot/oplot keywords with EXTRA,
April, 1997

windt@bell-labs.com

(See ./eplot.pro)

EROM

[Previous Routine] [Next Routine] [List of Routines]
NAME -

EROM
PURPOSE:
Read columns of data from a text file.

This program can be used to read data written by the MORE
program.

The file to be read must be such that if the data are
space-separated, then all variables are numeric; String
variables are allowed only if the data are separated by tabs,
colons, etc.

The file may contain any number of comment lines - which MUST
begin with a semicolon, and MUST be positioned before all data
lines.

CALLING SEQUENCE:
EROM,VOL,V1,Vv2,...V9]
or
EROM, V=V

KEYWORD PARAMETERS:

V - Set this keyword to a named variable that will be returned as

an array of structures holding the data and the variable names
specified in the last comment line. See RESTRICTIONS below

for more details.

FILE - String specifying the name of a file; if not supplied, the
user is queried.

SKIP - The number of lines at the beginning of the file that
should be skipped.

TAB - Specify /TAB for tab-separated data. (The default is space-
separated data.) It is only necessary to specify this
keyword if the file contains any string data columns.

SEPARATOR - A string specifying the character separating the data
columns.

COMMENT - Set this keyword to a named variable that will be
returned as a string array holding the comment lines
included in the file.

GROUP - GROUP_LEADER keyword passed to DIALOG_PICKFILE if FILE is
not specified.

CANCEL - Set this keyword to a named variable that will be
returned to indicate if the user pressed the CANCEL
button when prompted for a file to read, if the FILE
keyword is not set.

OUTPUTS:

IT the V keyword is not used, then the user must specify the
correct number of Vi (VO, V1, etc.) output parameters. ;
There must be as many Vi"s specified in the call to EROM as
there are columns of data. The V"s are double-precision
arrays, unless either the TAB or SEPARATOR keyword is
specified in which case they are all string arrays.

RESTRICTIONS:

IT EROM is called with the V keyword, then the columns of data
contained in the file are returned as double-precision fields
in the returned V structure variable. Use of the V keyword
requires that the data file contain at least one comment line,
and the last comment line MUST include the names of the data
variables separated by the "|" character.

For example, to read a file using the V keyword containing
three columns of 10 rows of data, then the last comment line
in the file must look like this:

; First Variable Name | Second One | Another Variable Name

Thus the V structure returned by EROM will have the following

tag names:

HELP,/STR,V

V[0] .VALUE DOUBLE Array[10]

V0] -NAME STRING “First Variable Name*
V[1]-VALUE DOUBLE Array[10]

V[1] -NAME STRING *Second One*

V[2].VALUE DOUBLE Array[10]

V[2] -NAME STRING “Another Variable Name®

MODIFICATION HISTORY:
David L. Windt, Bell Labs, March 1990

January, 1997 - DLW
Modified to ignore lines beginning with semicolons, and to
accept data separated by tabs, etc.; Removed the notitle and
comment keyword; included pickfile to prompt for filenames
when not specified.

June, 1997 - DLW
Returned numeric variables are now double-precision instead
of floating-point.

windt@bell-labs.com
DLW, May 2003

Added V, COMMENTS, GROUP and CANCEL keywords.
Replaced call to PICKFILE with call to DIALOG_PICKFILE

davidwindt@gmail.com

(See ./erom.pro)

ERRORF_FIT

[Previous Routine] [Next Routine] [List of Routines]
NAME -

ERRORF_FIT
PURPOSE:

fit y=F(x) where:
f(x) = a0*errorf((x-al)/a2))+a3+x*a4

CALLING SEQUENCE:
YFIT = ERRORF_FIT(X,Y,A)
INPUTS:
X - independent variable, must be a vector.

Y - dependent variable, must have the same number of points ;
as X.

A - initial values of adjustable parameters.
OUTPUTS:

YFIT = fitted function.
MODIFICATION HISTORY:

Adapted from GAUSSFIT

D. L. Windt, Bell Laboratories, June 1990
windt@bell-labs.com

(See ./errorf_fit.pro)

EXPO_FIT

[Previous Routine] [Next Routine] [List of Routines]
NAME -

EXPO_FIT
PURPOSE:
Fit y=F(x) where:
F(x) = a0*exp(-abs(x-al)/a2)+a3
a0 = height of exp, al = center of peak, a2 = 1/e width,
Estimate the parameters a0,al,a2,a3 and then call curvefit.
CALLING SEQUENCE:
YFIT = EXPO_FIT(X,Y,A)
INPUTS:

X - independent variable, must be a vector.

Y - dependent variable, must have the same number of points ;
as X.

OUTPUTS:
YFIT - fitted function.
OPTIONAL OUTPUT PARAMETERS:

A - Fit coefficients. a four element vector as described
above.

MODIFICATION HISTORY:
Adapted from GAUSSFIT

D. L. Windt, Bell Laboratories, March, 1990
windt@bell-labs.com

27-Feb-2003: Initial value for a may now be specified.

(See ./expo_fit.pro)

FILE_DATE

[Previous Routine] [Next Routine] [List of Routines]
NAME -

FILE_DATE

PURPOSE:

Determine Unix file creation date.

CALLING SEQUENCE:

Result=FILE_DATE(FILE_NAVME)

INPUTS:

FILE_NAME - A string specifying the name of the file

OUTPUTS:

Result - a string specifying the file creation date.
RESTRICTIONS:

Probably won"t work the way you want. So sue me.
MODIFICATION HISTORY:

David L. Windt, Bell Labs, May 1997
windt@bell-labs.com

(See ./file_date.pro)

FINDEX

[Previous Routine] [Next Routine] [List of Routines]
NAME -

FINDEX

PURPOSE: Compute "floating point index"™ into a table using binary
search. The resulting output may be used with INTERPOLATE.

USEAGE: result = Ffindex(u,v)

INPUT:
u a monitically increasing or decreasing 1-D grid
\Y; a scalor, or array of values

OUTPUT:

result Floating point index. Integer part of RESULT(i) gives
the index into to U such that V(i) is between

U(RESULT(1)) and U(RESULT(i)+1). The fractional part
is the weighting factor

V(i)-U(RESULT(i))

U(RESULT(i)+1)-U(RESULT(i))

DISCUSSION:
This routine is used to expedite one dimensional
interpolation on irregular 1-d grids. Using this routine
with INTERPOLATE is much faster then IDL"s INTERPOL
procedure because it uses a binary instead of linear
search algorithm. The speedup is even more dramatic when
the same independent variable (V) and grid (U) are used
for several dependent variable interpolations.

EXAMPLE:

In this example 1 found the FINDEX + INTERPOLATE combination
to be about 60 times faster then INTERPOL.

u=randomu(iseed,200000) & u=u(sort(u))
v=randomu(iseed, 10) & v=v(sort(v))
y=randomu(iseed,200000) & y=y(sort(y))

t=systime(1l) & yl=interpolate(y,findex(u,v)) & print,systime(l)-t
t=systime(1l) & y2=interpol(y,u,Vv) & print,systime(l)-t
print,f="(3(a,10f7.4/)) ", findex: ",yl,"interpol: ",y2,"diff:
AUTHOR: Paul Ricchiazzi 21 Feb 97
Institute for Computational Earth System Science
University of California, Santa Barbara
paul@icess.ucsb.edu

REVISIONS:

(See ./findex.pro)

"L,yl-y2

FLOYD_SAMPLING

[Previous Routine] [Next Routine] [List of Routines]
NAME :

FLOYD_SAMPLING
PURPOSE:

Randomly choose a unique set of M integers out of a set of N
integers ranging in value from O to N-1.

This program uses a sampling algorithm invented by Robert Floyd.
CALLING SEQUENCE:
Result=FLOYD_SAMPLING(SEED,M,N)
INPUTS:
SEED = A variable or constant used by the call to RANDOMU to
initialize the random sequence on input, and in which the
state of the random number generator is saved on output. Keep
in mind that the number sequences this function returns will
not be random if called repeatedly SEED with undefined.

M = number of integers to select randomly. M must be greater
than or equal to 1.

N = number of integers from which to select (i.e., ranging
from 0 to N-1). N must be greater than or equal to 2, and
must be greater than M.
OUTPUTS:
Result = M-element array of randomly selected integers.
EXAMPLE:
Result=FLOYD_SAMPLING(5,100)
Result is a 5-element integer array containing possible values from O
to 99, with no duplicates. It might look like this:
Result=[81,3,24,71,60]
MODIFICATION HISTORY:

David L. Windt, RXO, April 2013
davidwindt@gmail.com

(See ./floyd_sampling.pro)

FRACTAL_FIT

[Previous Routine] [Next Routine] [List of Routines]
NAME :

FRACTAL_FIT
PURPOSE:

Fit y=F(xX) where:
F(x) = a0/(x"al) [+a2]

Estimate the parameters a0,al[,a2] and then call curvefit.
CALLING SEQUENCE:
YFIT = FRACTAL_FIT(X,Y,A,BACKGROUND=BACKGROUND)

INPUTS:

X independent variable, must be a vector and MUST BE POSITIVE!

Y

dependent variable, must have the same number of points as X.
BACKGROUND = set to add a background term (a2).
OUTPUTS:
YFIT = fitted function.
OPTIONAL OUTPUT PARAMETERS:
A = coefficients. a two [three] element vector as described above.
RESTRICTIONS:
X must be positive.
MODIFICATION HISTORY:

D. L. Windt, Bell Laboratories, March, 1990
windt@bell-labs.com

(See ./fractal_fit.pro)

FWHM

[Previous Routine] [Next Routine] [List of Routines]
NAME -

FWHM
PURPOSE:

Interactively measure the full-width-half-max of a region of a
curve that has been previously plotted.

CALLING SEQUENCE:
RESULT=FWHM(XAXIS, YAXIS)
INPUTS:

XAXIS - The x axis variable which has been plotted.

YAXIS - The y axis variable which has been plotted.
OPTIONAL INPUT PARAMETERS:

RANGE - Vector of subscripts, which refers to the range of X,Y
values over which the FWHM is to be determined. IT
not supplied, then GET_ROIl is used to interactively
define the range. To use FWHM with a non-interactive
graphics device, range MUST be supplied.

KEYWORD PARAMETERS:

CWHM - The center point of the peak, defined as the mid-point
of the FWHM region.

YZERO - The zero point level. If not specified, the zero point
level is determined from the endpoints of the region
of interest of the curve.

YHM - The value at which the full-width is computed.

Allowable range is 0. to 1. If not specified, .5 is
used.

INVERT - Set to get width of "absorption line" rather than
"emission line".

NOHIGHLIGHT - Set to inhibit highlighting the region of
interest.

H _COLOR - The color index for highlighting the region of
interest. Default is 7 (Yellow.)

H_THICK - The thickness for highlighting the region of
interest.

NOLABEL - Set to inhibit labelling the fwhm.
L_HEADER - String specifying the label header. Default="".
L COLOR - Color index for the label.
L_FORMAT - Format string for label (eg. "(F4.2)").
UNITS - String specifying units along x axis, used in label.
CHARSIZE - Size of label text.
PSYM - PSYM
L CWHM - Set to include CWHM value in label.
OUTPUTS:

Result - The full-with-half-max of the region of interest
of the curve, in x-axis data units.

OPTIONAL OUTPUT PARAMETERS:

ROl - The subscripts of the digitized region of interest.

FWHM_ROI - The subscripts of the region between the fwhm
points and the max (min) of the function.

LINE_PTS - A 4-element array containing the coordinates of
the line drawn on the plot: [x0,x1,y0,y1]

LABEL - The label for the plot.

L POS - A two element array containing the X,y coordinates
of the label, in data coords.

RESTRICTIONS:

The data must be plotted prior to calling FWHM.
PROCEDURE :

The user is asked to digitize the endpoints of the region of
interest with the mouse. The region is highlighted, and the
fwhm is labelled.

MODIFICATION HISTORY:
D. L. Windt, Bell Laboratories, November 1989
March 1998 - Removed MANUAL keyword.

January 2004 - Now using local slopes to interpolate fwhm
points, for greater precision.

- Added CWHM keyword.

windt@astro.columbia.edu

(See ./fwhm.pro)

GAUSSEXPO_FIT

[Previous Routine] [Next Routine] [List of Routines]
NAME -

GAUSSEXPO_FIT

PURPOSE:
Fit y=F(xX) where:

Tf(X) = a0*exp(-z"2/2)+a3*exp(-abs(x-a4)/a5)+a6 and z=(x-al)/a2

a0 = height of gaussian, al = center of gaussian, a2 = 1/e

width of ; gaussian, a3 = height of exponential, a4 = center

of exponential, ; a5 = 1/e width of exponential,

a6=background.

Estimate the parameters a0,al,a2?,a3,a4,a5,a6 and then call curvefit.
CALLING SEQUENCE:

YFIT = GAUSSEXPO_FIT(X,Y,A)

INPUTS:

X = independent variable, must be a vector.

Y = dependent variable, must have the same number of points as Xx.
OUTPUTS:

YFIT = fitted function.
OPTIONAL OUTPUT PARAMETERS:

A = Fit coefficients. A six element vector as described above.
MODIFICATION HISTORY:

Adapted from GAUSSFIT

D. L. Windt, Bell Laboratories, March, 1990
windt@bell-labs.com

(See ./gaussexpo_fit.pro)

GAUSS FIT

[Previous Routine] [Next Routine] [List of Routines]
NAME -

GAUSS_FIT
PURPOSE:

Fit y=F(xX) where:
f(xX) = a0*exp(-z"2/2) + a3
and z=(x-al)/a2
a0 height of gaussian, al = center of gaussian, a2 = 1/e width,
a3 background.
Estimate the parameters a0,al,a2,a3 and then call CURFIT.

CALLING SEQUENCE:

YFIT = GAUSS_FIT(X,Y,A)
INPUTS:
X - independent variable, must be a vector.

Y - dependent variable, must have the same number of points ;
as X.

OUTPUTS
YFIT - fitted function.
OPTIONAL OUTPUT PARAMETERS:

A - Fit coefficients. a three element vector as described
above.

MODIFICATION HISTORY:
Adapted from GAUSSFIT

D. L. Windt, Bell Laboratories, March, 1990
windt@bell-labs.com

(See ./gauss_fit.pro)

GET_PEAK

[Previous Routine] [Next Routine] [List of Routines]
NAME -

GET_PEAK
PURPOSE:

Interactively find the local maximum of a previously plotted
curve, and indicate it on the plot.

CALLING SEQUENCE:
Result=GET_PEAK(XAXIS, YAXIS)
INPUTS:

XAXIS

the x axis variable which has been plotted.
YAXIS = the y axis variable which has been plotted.

KEYWORD PARAMETERS:

COLOR - the color index for marking the local maximum.
NOMARK - set to disable marking the location of the peak.

NOHIGHLIGHT - set to disable highlighting the region of
interest.

H_COLOR - the color index for highlighting the region of
interest. Default is 7 (Yellow).

H_THICK- the thickness for highlighting the region ; of
interest.

PRINT - set to print the x,y values of the peak.
OUTPUTS:
Result = the array subscript of the local max.
SIDE EFFECTS:
TEK_COLOR is used to load in the tektronix colors.
The region of interest of the curve is highlighted.
A vertical line is drawn through the local maximum.

PROCEDURE:

The user is asked to digitize the endpoints of the region of
interest with the mouse using GET_ROI.

MODIFICATION HISTORY:
D. L. Windt, Bell Laboratories, February 1990.

windt@bel l-labs.com

(See ./get_peak.pro)

GET PT

[Previous Routine] [Next Routine] [List of Routines]
NAME -

GET_PT
PURPOSE

Digitize a point on a previously plotted curve, and return
the corresponding array element.

CALLING SEQUENCE:

Result = GET_PT(XAXIS,YAXIS,XPOINT,YPOINT)
INPUTS:
XAXIS - the x axis vector which was used to make the plot.
YAXIS - the y axis vector which was used to make the plot.
KEYWORD PARAMETERS:

NOHIGHLIGHT - set to inhibit putting a red mark on the curve
at the digitized point.

MESSAGE - a string to print as the message to the user.
Default = "Digitize a point: *

NOINIT - set to inhibit placing the cursor iIn the center of
the plot window.

OUTPUTS:
Result - The array subscript of the digitized point.
OPTIONAL OUTPUT PARAMETERS:
XPOINT, YPOINT - the digitized points.
SIDE EFFECTS:
A mark is drawn on the plot at the digitized point.
PROCEDURE:
The user is asked to digitize a point on the curve using the
mouse. The VALUE_TO_ INDEX function is used to find the
closest array element.
MODIFICATION HISTORY:
D. L. Windt, Bell Laboratories, November 1989
Feb. 1991, Removed call to TEK COLOR
Mar. 1997, replaced index search code with call to

VALUE_TO_INDEX function.

windt@bel l-labs.com

(See ./get_pt.pro)

GET ROI

[Previous Routine] [Next Routine] [List of Routines]
NAME -

GET_ROI
PURPOSE:
Get a region-of-interest of a previously plotted curve.
CALLING SEQUENCE:
Result=GET_ROI (XAXIS,YAXIS)
INPUTS:

XAXIS

the x axis variable which has been plotted.

YAXIS

the y axis variable which has been plotted.
KEYWORD PARAMETERS:

NOHIGHLIGHT - set to disable highlighting the region of
interest.

H_COLOR - the color index for highlighting the region of
interest. Default is 7 (Yellow).

H THICK - the thickness for highlighting the region ; of
interest.

PSYM - PSYM.
OUTPUTS:

Result = the array of subscripts of the roi.
SIDE EFFECTS:

TEK_COLOR is used to load in the tektronix colors.
The region of interest of the curve is highlighted.

PROCEDURE:
The user is asked to digitize the endpoints of the region of
interest with the mouse using GET _PT. The region is
highlighted (unless nohighlight is set.)

MODIFICATION HISTORY:
D. L. Windt, Bell Laboratories, November 1989

windt@bell-labs.com

(See ./get_roi.pro)

GHOSTVIEW

[Previous Routine] [Next Routine] [List of Routines]
NAME -

GHOSTVIEW
PURPOSE:

Use the Unix ghostview program to view an IDL postscript file
CALLING SEQUENCE:

GHOSTVIEW [,FILE=FILE]
KEYWORD PARAMETERS:

FILE - the name of the file to view. Default is idl.ps
RESTRICTIONS:

Since the procedure spawns a '‘ghostview' process,
such an executable must exist or it ain"t goin® nowhere.

PROCEDURE:

IT the current device is PS, the program will issue
a DEVICE,/CLOSE command.

It will then SPAWN, "ghostview file_name&-”
MODIFICATION HISTORY:

David L. Windt, Bell Labs, March 1997
windt@bel l-labs.com

(See ./ghostview.pro)

GREEK

[Previous Routine] [Next Routine] [List of Routines]
NAME -

GREEK
PURPOSE:
This function returns the string needed to draw the specified

greek character using either the vector graphics font no. 4,
or PostScript font 9.

IT (!d.name eq "PS") and (Ip.font eq 0), then the PostScript
font will be used. Otherwise, the vector font will be used.

CALLING SEQUENCE:
Result = GREEK(Name)

INPUTS:

Name - String specifying the greek character name. Valid
inputs are:

alpha, beta, gamma, delta, epsilon, zeta, eta, theta
iota, kappa, lambda, mu, nu, xi, omicron, pi, rho,
sigma, tau, upsilon, phi, chi, psi, omega

Alpha, Beta, Gamma, Delta, Epsilon, Zeta, Eta, Theta
lota, Kappa, Lambda, Mu, Nu, Xi, Omicron, Pi, Rho,
Sigma, Tau, Upsilon, Phi, Chi, Psi, Omega

Although not greek, the following characters are also
valid (but will only work with the “"default® font 13):

angstrom, Angstrom, degrees, plus_minus

KEYWORDS:

FORCE_PS - Set to use PostScript font, regardless of the value
of !d.name and !p.font.

PLAIN - Set to just return Name in plain text.

APPEND FONT - Set to append the characters specifying a
"default® font: !3. That is, if this keyword is
set, then the command
Resul t=GREEK(theta,/APPEND_FONT)

will return the string

"19q13" for PostScript and "!14h!3" for vector
fonts.

OUTPUTS:

Result - The string containing the specified greek character.
EXAMPLE:

Result=GREEK(theta)

In this case, Result="19qg" if !d.name is "PS" and !p.font is
0; otherwise, Result="14h"

MODIFICATION HISTORY:

David L. Windt, Bell Labs, September 1998.
windt@bell-labs.com

(See ./greek.pro)

KAISER_BESSEL

[Previous Routine] [Next Routine] [List of Routines]
NAME :

KAISER_BESSEL
PURPOSE:

Window function for Fourier Transform filtering.
CATEGORY:

Signal, image processing.
CALLING SEQUENCE:

Result

KAISER_BESSEL(N1) (for 1D)

Result = KAISER_BESSEL(N1,N2) (for 2D)
INPUTS:
N1 - The number of columns of the result.
N2 - The number of rows of the result.

KEYWORD PARAMETERS:

ALPHA - The value of Pi*Alpha is half of the time-bandwidth
product. Default = 3.0

OUTPUTS:

Result(i) = BESELI(Ipi*alpha*sqrt(1-((findgen(N)-N/2) /7 (N/2))*2),0) /7 $

BESELI(!pi*alpha,0)
MODIFICATION HISTORY:
David L Windt, Bell Labs, August 1996

May, 1997 - Added 2D option.
windt@bell-labs.com

(See ./kaiser_bessel.pro)

LEGEND_RXO

[Previous Routine] [Next Routine] [List of Routines]
NAME -

LEGEND_RXO
PURPOSE:

Add to a plot a legend containing lines and plotting symbols,
optionally enclosed in a box.

CALLING SEQUENCE:
LEGEND_RXO, LABELS

INPUTS:
LABELS - n-element string array of labels.

KEYWORD PARAMETERS:
POSITION - an integer, specifying the location of the legend box:

: no legend is drawn.
: below plot, left
2: below plot, center
3: below plot, right

: lower left

: lower center

: lower right

: middle left
8: middle center
9: middle right
10: upper left
11: upper center
12: upper right

if not specified, default position=10
COLOR - n-element array of colors. default is !p.color

LINESTYLE - n-element array of linestyles. if ommited, only
symbols are plotted.

THICK - n-element array of thicknesses. default is !p.thick

PSYM - n-element array of psym values. if positive, only
symbols are plotted.

SYMSIZE - n-element array of symsize values. default is !p.symsize
SYMBOLS - array of "symbol® specifiers: each element of

psym which is equal to 8 (user-defined symbol)
must have a corresponding value for "symbol® to be

used by the procedure SYMBOLS.
Examples: psym=[8,8,8,8],symbols=[1,2,20,30]
psym=[1,2,8,8],symbols=[1,2]

USE_SYM - Set this keyword to use the SYM function to
generate plotting symbols. In this case the
SYMBOLS keyword is not needed; just specify PSYM
values to be passed to the SYM function. i.e.,
PSYM=14,/USE_SYM will produce an filled rightfacing
triangle

CHARSIZE - scalar specifiying the size of the text.
TITLE - scalar string specifying legend title
T _COLOR - scalar specifying the color index of the title.

NOLINES - set to inhibit drawing lines and symbols; just draw
labels in color.

SYM_ONLY - set to inhibit drawing lines; just draw symbols.
NOBOX - set to inhibit drawing a box around the legend
LINEWIDTH - width in character units. default = 4.

BOXPADX - padding in character units, between text and box in
X. default=2.0

BOXPADY - padding in character units, between text and box in
y. default=0.5

FONT - Set to an integer from 3 to 20, corresponding to the
Hershey vector font sets, referring to the font used
to display the text. |If a font other than !3 is used
in the text string, then FONT should be set
accordingly. (Any font commands embedded in the text
string are ignored.)

BOXFUDGEX - A scaling factor, used to fudge the width of the
box surrounding the text. Default=1.0.

BOXCOLOR - set to the color index used to draw the box.
Default is !'P.COLOR.

BOXFILL - set to the color index used to fill the box. Omit,
or set to -1 for no fill. No effect if NOBOX=1.

Plus all valid graphics keywords for xyouts and plots
RESTRICTIONS:
When specifying a position of 1,2 or 3, you"ll need
to (@) use the same charsize value for the plot and

for the legend, and (b) draw the plot with an extra
ymargin(0). 1i.e., set ymargin(0)=7+n_elements(text_array)

MODIFICATION HISTORY:

David L. Windt, Bell Labs, March 1997
windt@bell-labs.com

May 2011, dlw:

Now using WIDTH keyword from XYOUTS to do an even better job of
drawing the box.

October, 1997, dlw:

Now using the TEXT_WIDTH function, in order to do a somewhat
better job of drawing the box around the text.

NONPRINTER_SCALE keyword parameter is now obsolete.
BOXFUDGEX keyword parameter added.
January 2004 - Added USE_SYM keyword

May 2013 - Added BOXCOLOR and BOXFILL, and renamed LEGEND_ RXO,
DLW, davidwindt@gmail.com

(See ./legend_rxo.pro)

LPRINT

[Previous Routine] [Next Routine] [List of Routines]
NAME -

LPRINT
PURPOSE:
Close an IDL graphics file and print it.
CALLING SEQUENCE:
LPRINT
KEYWORD PARAMETERS:
NORETURN - set this keyword to inhibit executing
set_plot,getenv("IDL_DEVICE®) followed by
Ip.font=-1
FILE - the name of the file to print. Default is device

dependent: idl.ps for PS, idl.hp for HP, and idl.pcl
for PCL devices.

PRINTER - set to the name of the printer to use. Default = Ip

COMMAND - set to the name of the printer command to
use. Default = lpr.

Note: the COMMAND, PRINTER, and FILE keywords are combined as
follows:

it COMMAND="Ipr~, then the program spawns the unix command
"lpr -Pprinter file"

it COMMAND="Ip*", then the program spawns the unix command
“Ip dprinter file"”

if COMMAND is anything else, the program simply ignores the
printer and file keywords, and spawns the
command as is.

MODIFICATION HISTORY:

D. L. Windt, Bell Laboratories, November 1989
Added PRINTER keyword, June 1993.

Added COMMAND keywrd, replaced RETURN with NORETURN keyword,
and added code to execute !Ip.font=-1 unless
NORETURN keyword is set. March, 1997.

windt@bell-labs.com

(See ./lprint.pro)

LS

[Previous Routine] [Next Routine] [List of Routines]
NAME -

LS
CATEGORY:
Stupid little convenience routines.

PURPOSE:

List the contents of the current directory, like the Unix "Is”
command .

CALLING SEQUENCE:

LS[,NAME]

NAME - An optional string specifying the names of the files to
be listed. Wild cards are allowed. For example,
Is,"*_pro” will list all files ending In _.pro.

MODIFICATION HISTORY:

David L. Windt, Bell Labs, November 1989
windt@bell-labs.com

February, 1998 - Now works under Windows and MacOS, making use
of FINDFILE. But the old DIR keyword is gone.

(See ./Is.pro)

MAKE_LATEX_TBL

[Previous Routine] [Next Routine] [List of Routines]
NAME -

MAKE_LATEX_TBL

PURPOSE:

Create a LaTeX format table.

CALLING SEQUENCE:

MAKE_LATEX_TBL ,ARRAY,TFILE
INPUTS:

ARRAY - (n,m) array of data.

TFILE - string specifying the name of the
KEYWORD PARAMETERS:

".tex" file to create.

COLUMNS - An n-element string specifying the LaTeX column
format. For example, if array = (3,m), then an
acceptable value for columns would be
L1117, 1Icl®,"Icl™]1, which would left-justify the
Ffirst column of data, and center the remaining two.

FORMAT - an n-element string specifying the FORMAT used to
PRINTF the data. This must conform to IDL FORMAT
standards. If not set, the default the data are
printed using the IDL free format.

TITLE - a string specifying the title of the table.

HEADINGS - an n-element string array containing the table

headings.
NOHLINES - set to inhibit printing \hline between rows of data.
SIDE EFFECTS:
The "_tex® file iIs created.
RESTRICTIONS:
The TITLE is printed with vertical lines on either ; side,
regardless of how the COLUMNS parameter may be ; set. It is
thus necessary to edit the file to remove the vertical line
commands if desired.
PROCEDURE:
The data contained in ARRAY are printed to a file ; with the
appropriate "&" and "\\" symbols necessary ; for use as in the
LaTeX tabular environment. If ; COLUMNS is not set, the
default is "|c|" which centers the data in columns, with
vertical line separators.

MODIFICATION HISTORY:

David L. Windt, Bell Laboratories, December 1989.
windt@bell-labs.com

(See ./make_latex_tbl.pro)

MK_BITARRAY

[Previous Routine] [Next Routine] [List of Routines]
NAME -

mk_bitarray
PURPOSE:
Create an array of 1"s & 0"s corresponding to input bits set
(works for negative numbers, too, unlike similar routines)
CATEGORY :
Bits
CALLING SEQUENCE:
IDL> array= mk_bitarray(input)
IDL> array= mk_bitarray(input, nbits=5)
INPUTS:
input = whatever; might be something like !'X_STYLE
KEYWORD PARAMETERS:
NBITS=nbits - length of returned array (default to input type)
PRINT - if set, will print bits in groups of fours.
OUTPUTS:
Byte array containing 1"s and 0"s out
COMMON BLOCKS:
NONE

EXAMPLE:
IDL> print,mk bitarray(3, nbits=8)
11 0 0 0 o0 o0 o
IDL> dum = mk_bitarray(1025, /print)"
1000 0O0O0OO0OO0O O0OO0O10 O0OOO
LIMITATION:
Only works on a scalar.
MODIFICATION HISTORY:
05-Jun-00 default nbits to input type. add print keyword.
30-Mar-99 Written by Bill Davis, PPPL

(See ./mk_bitarray.pro)

MK_NEW _PTRS

[Previous Routine] [Next Routine] [List of Routines]
NAME -

MK_NEW_PTRS
PURPOSE:
Make a copy of a pointer variable, or a structure variable
containing pointer variables as tags, such that the
de-referenced pointer values are copied, but new pointer heap
variables are created in the copy of the original variable.
CALLING SEQUENCE:
Results=MK_NEW_PTRS(SOURCE)
INPUTS:
SOURCE = The source structure variable.
EXAMPLE:
IDL> a={n:ptr_new(/allocate_heap)}

IDL> b=a
IDL> help,a.n,b.n

<Expression> POINTER = <PtrHeapVarl>
<Expression> POINTER = <PtrHeapVarl>
IDL> b=mk_new_ptrs(a)

IDL> help,a.n,b.n

<Expression> POINTER = <PtrHeapVaril>
<Expression> POINTER = <PtrHeapVar2>

PROCEDURE:

SAVE and RESTORE to and from a temporary file are used to
generate the new pointers. Ildeally, there would be keyword to
the STRUCT_ASSIGN procedure that would accomplish the same

thing without having to use this workaround...but so far (IDL
6.0) such a keyword does not exist.

MODIFICATION HISTORY:
David L. Windt, Columbia University, Oct-2003

windt@astro.columbia.edu

(See ./mk_new_ptrs.pro)

MORE

[Previous Routine] [Next Routine] [List of Routines]
NAME :

MORE
PURPOSE:

Print one or more variables on the screen or to a file, using
the MORE keyword to printf.

CALLING SEQUENCE:
MORE,VvO[,v1,v2,...v19]
INPUTS:

VO,V1l,...V19 - Any type of array variables; they must all be
the same length.

KEYWORD PARAMETERS:

FILE - string specifying the name of an output file.

INDEX - set to print the array indices in the first column.

TITLE - string array of variable names.

COMMENT - string array of comments

TAB - set this keyword to create tab-separated data; this is
useful when writing to a file if any of the variables are
strings, in which case the data can be read using EROM,/TAB

COMMA - set this keyword to create comma-separated data

APPEND - If FILE is specified, the APPEND keyword caused data to
be appended to the end of the file.

SEPARATE_TITLES - Set this keyword to insert a "|" character

between each variable name specified by the
TITLE keyword.

MODIFICATION HISTORY:
David L. Windt, Bell Labs, March 1990
Added comment keyword, August 1992
March 1997 - Title and comment lines are now written with
preceding semicolons. Fixed bug to correctly
deal with string arrays. Added TAB keyword.
Removed NOINDEX keyword. Added INDEX keyword.

November 1997 - Removed Unix-specific stuff, so that it now
works (somewhat) under Windows and MacOS.

May 2003 - Added APPEND and SEPARATE_TITLES keyword.
July 2007 - Changed loop counters to longword type.
November 2008 - Added COMMA keyword.

davidwindt@gmail.com

(See ./more.pro)

MPFIT

[Previous Routine] [Next Routine] [List of Routines]
NAME -
MPFIT

AUTHOR:
Craig B. Markwardt, NASA/GSFC Code 662, Greenbelt, MD 20770
craigm@lheamail .gsfc.nasa.gov
UPDATED VERSIONs can be found on my WEB PAGE:
http://cow.physics.wisc.edu/~craign/idl/Zidl _html

PURPOSE:
Perform Levenberg-Marquardt least-squares minimization (MINPACK-1)

MAJOR TOPICS:
Curve and Surface Fitting

CALLING SEQUENCE:
parms = MPFIT(MYFUNCT, start _parms, FUNCTARGS=fcnargs, NFEV=nfev,
MAXITER=maxiter, ERRMSG=errmsg, NPRINT=nprint, QUIET=quiet,
FTOL=Ftol, XTOL=xtol, GTOL=gtol, NITER=niter,
STATUS=status, ITERPROC=iterproc, ITERARGS=iterargs,
COVAR=covar, PERROR=perror, BESTNORM=bestnorm,
PARINFO=parinfo)

DESCRIPTION:

MPFIT uses the Levenberg-Marquardt technique to solve the
least-squares problem. In its typical use, MPFIT will be used to
fit a user-supplied function (the "model') to user-supplied data
points (the "‘data’™) by adjusting a set of parameters. MPFIT is
based upon MINPACK-1 (LMDIF.F) by More® and collaborators.

For example, a researcher may think that a set of observed data
points is best modelled with a Gaussian curve. A Gaussian curve is
parameterized by i1ts mean, standard deviation and normalization.
MPFIT will, within certain constraints, find the set of parameters
which best fits the data. The Ffit is "best" in the least-squares
sense; that is, the sum of the weighted squared differences between
the model and data is minimized.

The Levenberg-Marquardt technique is a particular strategy for
iteratively searching for the best fit. This particular
implementation is drawn from MINPACK-1 (see NETLIB), and seems to
be more robust than routines provided with IDL. This version
allows upper and lower bounding constraints to be placed on each
parameter, or the parameter can be held fixed.

The IDL user-supplied function should return an array of weighted
deviations between model and data. In a typical scientific problem
the residuals should be weighted so that each deviate has a
gaussian sigma of 1.0. If X represents values of the independent
variable, Y represents a measurement for each value of X, and ERR
represents the error in the measurements, then the deviates could
be calculated as follows:

DEVIATES = (Y - F(X)) / ERR

where F is the function representing the model. You are
recommended to use the convenience functions MPFITFUN and
MPFITEXPR, which are driver functions that calculate the deviates
for you. |If ERR are the l-sigma uncertainties in Y, then

TOTAL(DEVIATES 2)

will be the total chi-squared value. MPFIT will minimize the
chi-square value. The values of X, Y and ERR are passed through
MPFIT to the user-supplied function via the FUNCTARGS keyword.

Simple constraints can be placed on parameter values by using the
PARINFO keyword to MPFIT. See below for a description of this
keyword.

MPFIT does not perform more general optimization tasks. See TNMIN
instead. MPFIT is customized, based on MINPACK-1, to the
least-squares minimization problem.

USER FUNCTION

The user must define a function which returns the appropriate
values as specified above. The function should return the weighted

deviations between the model and the data. For applications which
use Finite-difference derivatives -- the default -- the user
function should be declared in the following way:

FUNCTION MYFUNCT, p, X=X, Y=y, ERR=err
; Parameter values are passed in "p"
model = F(X, p)
return, (y-model)/err

END

See below for applications with explicit derivatives.

The keyword parameters X, Y, and ERR in the example above are
suggestive but not required. Any parameters can be passed to
MYFUNCT by using the FUNCTARGS keyword to MPFIT. Use MPFITFUN and
MPFITEXPR if you need ideas on how to do that. The function *must*
accept a parameter list, P.

In general there are no restrictions on the number of dimensions in
X, Y or ERR. However the deviates *must* be returned in a
one-dimensional array, and must have the same type (float or
double) as the input arrays.

See below for error reporting mechanisms.

CHECKING STATUS AND HANNDLING ERRORS

Upon return, MPFIT will report the status of the fitting operation
in the STATUS and ERRMSG keywords. The STATUS keyword will contain
a numerical code which indicates the success or failure status.
Generally speaking, any value 1 or greater indicates success, while
a value of 0 or less indicates a possible failure. The ERRMSG
keyword will contain a text string which should describe the error
condition more fully.

By default, MPFIT will trap fatal errors and report them to the
caller gracefully. However, during the debugging process, it is
often useful to halt execution where the error occurred. When you
set the NOCATCH keyword, MPFIT will not do any special error
trapping, and execution will stop whereever the error occurred.

MPFIT does not explicitly change the !'ERROR_STATE variable
(although it may be changed implicitly if MPFIT calls MESSAGE). It
is the caller™s responsibility to call MESSAGE, /RESET to ensure
that the error state is initialized before calling MPFIT.

User functions may also indicate non-fatal error conditions using
the ERROR_CODE common block variable, as described below under the
MPFIT_ERROR common block definition (by setting ERROR_CODE to a
number between -15 and -1). When the user function sets an error
condition via ERROR_CODE, MPFIT will gracefully exit immediately
and report this condition to the caller. The ERROR_CODE is
returned in the STATUS keyword in that case.

EXPLICIT DERIVATIVES

In the search for the best-fit solution, MPFIT by default
calculates derivatives numerically via a finite difference
approximation. The user-supplied function need not calculate the
derivatives explicitly. However, the user function *may* calculate
the derivatives if desired, but only if the model function is
declared with an additional position parameter, DP, as described
below. If the user function does not accept this additional
parameter, MPFIT will report an error. As a practical matter, it
is often sufficient and even faster to allow MPFIT to calculate the
derivatives numerically, but this option is available for users who
wish more control over the fitting process.

There are two ways to enable explicit derivatives. First, the user
can set the keyword AUTODERIVATIVE=0, which is a global switch for
all parameters. In this case, MPFIT will request explicit
derivatives for every free parameter.

Second, the user may request explicit derivatives for specifically
selected parameters using the PARINFO.MPSIDE=3 (see '"'CONSTRAINING
PARAMETER VALUES WITH THE PARINFO KEYWORD'™ below). In this
strategy, the user picks and chooses which parameter derivatives
are computed explicitly versus numerically. When PARINFOLi]-MPSIDE
EQ 3, then the ith parameter derivative is computed explicitly.

The keyword setting AUTODERIVATIVE=0 always globally overrides the
individual values of PARINFO.MPSIDE. Setting AUTODERIVATIVE=0 is
equivalent to resetting PARINFO_MPSIDE=3 for all parameters.

Even if the user requests explicit derivatives for some or all
parameters, MPFIT will not always request explicit derivatives on
every user function call.

EXPLICIT DERIVATIVES - CALLING INTERFACE

When AUTODERIVATIVE=0, the user function is responsible for
calculating the derivatives of the *residuals* with respect to each
parameter. The user function should be declared as follows:

; MYFUNCT - example user function

; P - input parameter values (N-element array)

; DP - upon input, an N-vector indicating which parameters
; to compute derivatives for;

; upon output, the user function must return

; an ARRAY(M,N) of derivatives in this keyword

; (keywords) - any other keywords specified by FUNCTARGS

; RETURNS - residual values

F

UNCTION MYFUNCT, p, dp, X=x, Y=y, ERR=err
model = F(X, p) ;> Model function
resid = (y - model)/err ;; Residual calculation (for example)

if n_params() GT 1 then begin
; Create derivative and compute derivative array
requested = dp ; Save original value of DP
dp = make_array(n_elements(x), n_elements(p), value=x[0]*0)

; Compute derivative if requested by caller
for 1 = 0, n_elements(p)-1 do if requested(i) NE O then $
dp(*,1) = FGRAD(X, p, 1) / err
endif

return, resid
END

where FGRAD(X, p, i) is a model function which computes the
derivative of the model F(X,p) with respect to parameter P(i) at X.

A quirk in the implementation leaves a stray negative sign in the
definition of DP. The derivative of the *residual* should be
"-FGRAD(X,p,1) 7/ err" because of how the residual is defined
("'resid = (data - model) 7/ err"). **HOWEVER** because of the
implementation quirk, MPFIT expects FGRAD(X,p,i)/err instead,
i.e. the opposite sign of the gradient of RESID.

Derivatives should be returned in the DP array. DP should be an
ARRAY(m,n) array, where m is the number of data points and n is the
number of parameters. -DP[i,j] is the derivative of the ith
residual with respect to the jth parameter (note the minus sign

due to the quirk described above).

As noted above, MPFIT may not always request derivatives from the
user function. In those cases, the parameter DP is not passed.
Therefore functions can use N_PARAMS() to indicate whether they
must compute the derivatives or not.

The derivatives with respect to fixed parameters are ignored; zero
is an appropriate value to insert for those derivatives. Upon
input to the user function, DP is set to a vector with the same
length as P, with a value of 1 for a parameter which is free, and a
value of zero for a parameter which is fixed (and hence no
derivative needs to be calculated). This iInput vector may be
overwritten as needed. In the example above, the original DP
vector is saved to a variable called REQUESTED, and used as a mask
to calculate only those derivatives that are required.

IT the data is higher than one dimensional, then the *last*
dimension should be the parameter dimension. Example: fitting a
50x50 image, "'dp'" should be 50x50xNPAR.

EXPLICIT DERIVATIVES - TESTING and DEBUGGING

For reasonably complicated user functions, the calculation of
explicit derivatives of the correct sign and magnitude can be
difficult to get right. A simple sign error can cause MPFIT to be
confused. MPFIT has a derivative debugging mode which will compute
the derivatives *both* numerically and explicitly, and compare the
results.

It is expected that during production usage, derivative debugging
should be disabled for all parameters.

In order to enable derivative debugging mode, set the following

PARINFO members for the ith parameter.
PARINFO[1] -MPSIDE = 3 ; Enable explicit derivatives
PARINFO[1] -MPDERIV_DEBUG = 1 ; Enable derivative debugging mode
PARINFO[1] -MPDERIV_RELTOL = ?? ; Relative tolerance for comparison
PARINFO[i].MPDERIV_ABSTOL = ?? ; Absolute tolerance for comparison
Note that these settings are maintained on a parameter-by-parameter
basis using PARINFO, so the user can choose which parameters
derivatives will be tested.

When _MPDERIV_DEBUG is set, then MPFIT Ffirst computes the
derivative explicitly by requesting them from the user function.
Then, it computes the derivatives numerically via finite
differencing, and compares the two values. |If the difference
exceeds a tolerance threshold, then the values are printed out to
alert the user. The tolerance level threshold contains both a
relative and an absolute component, and is expressed as,

ABS(DERIV_U - DERIV_N) GE (ABSTOL + RELTOL*ABS(DERIV_U))

where DERIV_U and DERIV_N are the derivatives computed explicitly
and numerically, respectively. Appropriate values
for most users will be:

PARINFO[i] .MPDERIV_RELTOL
PARINFO[i] .MPDERIV_ABSTOL

1d-3 ;; Suggested relative tolerance
1d-7 ;; Suggested absolute tolerance

although these thresholds may have to be adjusted for a particular
problem. When the threshold is exceeded, users can expect to see a
tabular report like this one:

FJAC DEBUG BEGIN

IPNT FUNC DERIV_U DERIV_N DIFF_ABS DIFF_REL
FJAC PARM 2
80 -0.7308 0.04233 0.04233 -5.543E-07 -1.309E-05
99 1.370 0.01417 0.01417 -5.518E-07 -3.895E-05
118 0.07187 -0.01400 -0.01400 -5.566E-07 3.977E-05
137 1.844 -0.04216 -0.04216 -5.589E-07 1.326E-05

FJAC DEBUG END

The report will be bracketed by FJAC DEBUG BEGIN/END statements.
Each parameter will be delimited by the statement FJAC PARM n,
where n is the parameter number. The columns are,

IPNT - data point number (0 ... M-1)

FUNC - function value at that point

DERIV_U - explicit derivative value at that point
DERIV_N - numerical derivative estimate at that point
DIFF_ABS - absolute difference (DERIV_U - DERIV_N)
DIFF_REL - relative difference (DIFF_ABS)/(DERIV_U)

When prints appear in this report, it is most important to check
that the derivatives computed in two different ways have the same
numerical sign and the same order of magnitude, since these are the
most common programming mistakes.

A line of this form may also appear

#FIACMASK =111111111111111111111

This line indicates for which parameters explicit derivatives are
expected. A list of all-1s indicates all explicit derivatives for
all parameters are requested from the user function.

CONSTRAINING PARAMETER VALUES WITH THE PARINFO KEYWORD

The behavior of MPFIT can be modified with respect to each
parameter to be fitted. A parameter value can be fixed; simple
boundary constraints can be imposed; limitations on the parameter
changes can be imposed; properties of the automatic derivative can
be modified; and parameters can be tied to one another.

These properties are governed by the PARINFO structure, which is
passed as a keyword parameter to MPFIT.

PARINFO should be an array of structures, one for each parameter.
Each parameter is associated with one element of the array, in
numerical order. The structure can have the following entries
(none are required):

-VALUE - the starting parameter value (but see the START_PARAMS
parameter for more information).

_.FIXED - a boolean value, whether the parameter is to be held
fixed or not. Fixed parameters are not varied by
MPFIT, but are passed on to MYFUNCT for evaluation.

-LIMITED - a two-element boolean array. If the first/second
element is set, then the parameter is bounded on the
lower/upper side. A parameter can be bounded on both
sides. Both LIMITED and LIMITS must be given
together.

-LIMITS - a two-element float or double array. Gives the
parameter limits on the lower and upper sides,
respectively. Zero, one or two of these values can be
set, depending on the values of LIMITED. Both LIMITED
and LIMITS must be given together.

-PARNAME - a string, giving the name of the parameter. The
Ffitting code of MPFIT does not use this tag in any
way. However, the default ITERPROC will print the
parameter name if available.

.STEP - the step size to be used in calculating the numerical
derivatives. |IT set to zero, then the step size is
computed automatically. Ignored when AUTODERIVATIVE=0.
This value is superceded by the RELSTEP value.

-RELSTEP - the *relative* step size to be used in calculating
the numerical derivatives. This number is the
fractional size of the step, compared to the
parameter value. This value supercedes the STEP
setting. |If the parameter is zero, then a default

step size is chosen.

-MPSIDE - selector for type of derivative calculation. This
field can take one of five possible values:

0 - one-sided derivative computed automatically
1 - one-sided derivative (f(xth) - f(x))/h
-1 - one-sided derivative (F(X) - f(x-h))/h

2 - two-sided derivative (F(x+h) - f(x-h))/(2*h)
3 - explicit derivative used for this parameter

In the first four cases, the derivative is approximated
numerically by finite difference, with step size
H=STEP, where the STEP parameter is defined above. The
last case, MPSIDE=3, indicates to allow the user
function to compute the derivative explicitly (see
section on "EXPLICIT DERIVATIVES™). AUTODERIVATIVE=0
overrides this setting for all parameters, and is
equivalent to MPSIDE=3 for all parameters. For
MPSIDE=0, the "automatic' one-sided derivative method
will chose a direction for the finite difference which
does not violate any constraints. The other methods
(MPSIDE=-1 or MPSIDE=1) do not perform this check. The
two-sided method is in principle more precise, but
requires twice as many function evaluations. Default:
0.

-MPDERIV_DEBUG - set this value to 1 to enable debugging of
user-supplied explicit derivatives (see "TESTING and
DEBUGGING'" section above). In addition, the
user must enable calculation of explicit derivatives by
either setting AUTODERIVATIVE=0, or MPSIDE=3 for the
desired parameters. When this option is enabled, a
report may be printed to the console, depending on the
MPDERIV_ABSTOL and MPDERIV_RELTOL settings.

Default: 0 (no debugging)

-MPDERIV_ABSTOL, .MPDERIV_RELTOL - tolerance settings for
print-out of debugging information, for each parameter
where debugging is enabled. See "TESTING and
DEBUGGING'" section above for the meanings of these two
fields.

-MPMAXSTEP - the maximum change to be made in the parameter
value. During the fitting process, the parameter
will never be changed by more than this value in
one iteration.

A value of O indicates no maximum. Default: O.

.TIED - a string expression which "ties" the parameter to other
free or fixed parameters as an equality constraint. Any
expression involving constants and the parameter array P
are permitted.

Example: if parameter 2 is always to be twice parameter

1 then use the following: parinfo[2].tied = "2 * P[1]".
Since they are totally constrained, tied parameters are
considered to be fixed; no errors are computed for them,
and any LIMITS are not obeyed.

[NOTE: the PARNAME can"t be used in a TIED expression.]

-MPPRINT - if set to 1, then the default ITERPROC will print the
parameter value. |If set to 0, the parameter value
will not be printed. This tag can be used to
selectively print only a few parameter values out of
many. Default: 1 (all parameters printed)

-MPFORMAT - IDL format string to print the parameter within
ITERPROC. Default: "(G20.6)" (An empty string will
also use the default.)

Future modifications to the PARINFO structure, if any, will involve
adding structure tags beginning with the two letters "MP".
Therefore programmers are urged to avoid using tags starting with
"MP'", but otherwise they are free to include their own fields
within the PARINFO structure, which will be ignored by MPFIT.

PARINFO Example:

parinfo = replicate({value:0.D, fixed:0, limited:[0,0], $
limits:[0.D,0]}, 5)

parinfo[0].fixed = 1

parinfo[4]-limited[0] = 1

parinfo[4].limits[0] = 50.D

parinfo[*].value = [5.7D, 2.2, 500., 1.5, 2000.]

A total of 5 parameters, with starting values of 5.7,
2.2, 500, 1.5, and 2000 are given. The First parameter
is fixed at a value of 5.7, and the last parameter is
constrained to be above 50.

RECURSION

Generally, recursion is not allowed. As of version 1.77, MPFIT has
recursion protection which does not allow a model function to
itself call MPFIT. Users who wish to perform multi-level
optimization should investigate the "EXTERNAL®" function evaluation
methods described below for hard-to-evaluate functions. That
method places more control in the user®s hands. The user can
design a "recursive" application by taking care.

In most cases the recursion protection should be well-behaved.
However, if the user is doing debugging, it is possible for the

protection system to get "stuck." In order to reset it, run the
procedure:

MPFIT_RESET_RECURSION
and the protection system should get "unstuck." It is save to call

this procedure at any time.

COMPATIBILITY

This function is designed to work with IDL 5.0 or greater.

Because TIED parameters and the "(EXTERNAL)"™ user-model feature use
the EXECUTE() function, they cannot be used with the free version
of the IDL Virtual Machine.

DETERMINING THE VERSION OF MPFIT

MPFIT is a changing library. Users of MPFIT may also depend on a
specific version of the library being present. As of version 1.70
of MPFIT, a VERSION keyword has been added which allows the user to
query which version is present. The keyword works like this:

RESULT = MPFIT(/query, VERSION=version)

This call uses the /QUERY keyword to query the version number
without performing any computations. Users of MPFIT can call this
method to determine which version is in the IDL path before
actually using MPFIT to do any numerical work. Upon return, the
VERSION keyword contains the version number of MPFIT, expressed as
a string of the form "X.Y" where X and Y are integers.

Users can perform their own version checking, or use the built-in
error checking of MPFIT. The MIN_VERSION keyword enforces the
requested minimum version number. For example,

RESULT = MPFIT(/query, VERSION=version, MIN_VERSION="1.70%)

will check whether the accessed version is 1.70 or greater, without
performing any numerical processing.

The VERSION and MIN_VERSION keywords were added in MPFIT

version 1.70 and later. |If the caller attempts to use the VERSION
or MIN_VERSION keywords, and an *older* version of the code is
present in the caller®s path, then IDL will throw an “unknown
keyword® error. Therefore, in order to be robust, the caller, must
use exception handling. Here is an example demanding at least
version 1.70.

MPFIT_OK = O & VERSION = "<unknown>"

CATCH, CATCHERR

IF CATCHERR EQ O THEN MPFIT_OK = MPFIT(/query, VERSION=version, $
MIN_VERSION="1.70")

CATCH, /CANCEL

IF NOT MPFIT_OK THEN $
MESSAGE, "ERROR: you must have MPFIT version 1.70 or higher in "+$
"your path (found version "+version+")"
OFf course, the caller can also do its own version number
requirements checking.

HARD-TO-COMPUTE FUNCTIONS: "EXTERNAL™ EVALUATION

The normal mode of operation for MPFIT is for the user to pass a

function name, and MPFIT will call the user function multiple times
as it iterates toward a solution.

Some user functions are particularly hard to compute using the
standard model of MPFIT. Usually these are functions that depend
on a large amount of external data, and so it is not feasible, or
at least highly impractical, to have MPFIT call it. In those cases
it may be possible to use the "(EXTERNAL)'" evaluation option.

In this case the user is responsible for making all function *and
derivative* evaluations. The function and Jacobian data are passed
in through the EXTERNAL_FVEC and EXTERNAL_FJAC keywords,
respectively. The user indicates the selection of this option by
specifying a function name (MYFUNCT) of "(EXTERNAL)"™. No
user-function calls are made when EXTERNAL evaluation is being
used.

** SPECIAL NOTE ** For the "(EXTERNAL)" case, the quirk noted above
does not apply. The gradient matrix, EXTERNAL_FJAC, should be
comparable to "-FGRAD(X,p)/err", which is the *opposite* sign of
the DP matrix described above. In other words, EXTERNAL_FJAC
has the same sign as the derivative of EXTERNAL_FVEC, and the
opposite sign of FGRAD.

At the end of each iteration, control returns to the user, who must
reevaluate the function at its new parameter values. Users should
check the return value of the STATUS keyword, where a value of 9
indicates the user should supply more data for the next iteration,
and re-call MPFIT. The user may refrain from calling MPFIT
further; as usual, STATUS will indicate when the solution has
converged and no more iterations are required.

Because MPFIT must maintain its own data structures between calls,
the user must also pass a named variable to the EXTERNAL_STATE
keyword. This variable must be maintained by the user, but not
changed, throughout the fitting process. When no more iterations
are desired, the named variable may be discarded.

INPUTS:

MYFUNCT - a string variable containing the name of the function to
be minimized. The function should return the weighted
deviations between the model and the data, as described
above.

For EXTERNAL evaluation of functions, this parameter
should be set to a value of "(EXTERNAL)".

START_PARAMS - An one-dimensional array of starting values for each of the
parameters of the model. The number of parameters
should be fewer than the number of measurements.
Also, the parameters should have the same data type
as the measurements (double is preferred).

This parameter is optional if the PARINFO keyword
is used (but see PARINFO). The PARINFO keyword
provides a mechanism to fix or constrain individual

RETURNS:

parameters. |If both START_PARAMS and PARINFO are
passed, then the starting *value* is taken from
START_PARAMS, but the *constraints* are taken from
PARINFO.

Returns the array of best-fit parameters.
Exceptions:
* if /QUERY 1is set (see QUERY).

KEYWORD PARAMETERS:

AUTODERIVATIVE - If this is set, derivatives of the function will

be computed automatically via a finite

differencing procedure. If not set, then MYFUNCT

must provide the explicit derivatives.

Default: set (=1)

NOTE: to supply your own explicit derivatives,
explicitly pass AUTODERIVATIVE=0

BESTNORM - upon return, the value of the summed squared weighted

residuals for the returned parameter values,
i.e. TOTAL(DEVIATES"N2).

BEST_FJAC - upon return, BEST_FJAC contains the Jacobian, or

partial derivative, matrix for the best-fit model.
The values are an array,

ARRAY (N_ELEMENTS(DEVIATES) ,NFREE) where NFREE is the
number of free parameters. This array is only
computed if /CALC_FJAC is set, otherwise BEST_FJAC is
undefined.

The returned array is such that BEST FJAC[I,J] is the
partial derivative of DEVIATES[I1] with respect to
parameter PARMS[PFREE_INDEX[J]]- Note that since
deviates are (data-model)*weight, the Jacobian of the
deviates will have the opposite sign from the
Jacobian of the *model*, and may be scaled by a
factor.

BEST _RESID - upon return, an array of best-fit deviates.

CALC_FJAC - if set, then calculate the Jacobian and return it in

BEST FJAC. |If not set, then the return value of
BEST_FJAC is undefined.

COVAR - the covariance matrix for the set of parameters returned

by MPFIT. The matrix is NxN where N is the number of
parameters. The square root of the diagonal elements
gives the formal l1l-sigma statistical errors on the
parameters IF errors were treated "properly”™ in MYFUNC.
Parameter errors are also returned in PERROR.

To compute the correlation matrix, PCOR, use this example:
PCOR = COV * O

FOR # = 0, n-1 DO FOR j = 0, n-1 DO $
PCOR[i,j] = COV[i,j]/sqrt(COV[i,i]1*COV[Lj,.il1)
or equivalently, in vector notation,
PCOR = COV / (PERROR # PERROR)

IT NOCOVAR is set or MPFIT terminated abnormally, then
COVAR 1s set to a scalar with value 'VALUES.D NAN.

DOF - number of degrees of freedom, computed as
DOF = N_ELEMENTS(DEVIATES) - NFREE
Note that this doesn"t account for pegged parameters (see
NPEGGED). It also does not account for data points which
are assigned zero weight by the user function.

ERRMSG - a string error or warning message is returned.

EXTERNAL_FVEC - upon input, the function values, evaluated at
START_PARAMS. This should be an M-vector, where M
is the number of data points.

EXTERNAL_FJAC - upon input, the Jacobian array of partial
derivative values. This should be a M x N array,
where M is the number of data points and N is the
number of parameters. NOTE: that all FIXED or
TIED parameters must *not* be included in this
array.

EXTERNAL_STATE - a named variable to store MPFIT-related state
information between iterations (used in input and
output to MPFIT). The user must not manipulate
or discard this data until the final iteration is
performed.

FASTNORM - set this keyword to select a faster algorithm to
compute sum-of-square values internally. For systems
with large numbers of data points, the standard
algorithm can become prohibitively slow because it
cannot be vectorized well. By setting this keyword,
MPFIT will run faster, but it will be more prone to
floating point overflows and underflows. Thus, setting
this keyword may sacrifice some stability in the
fitting process.

FTOL - a nonnegative input variable. Termination occurs when both
the actual and predicted relative reductions in the sum of
squares are at most FTOL (and STATUS is accordingly set to
1 or 3). Therefore, FTOL measures the relative error
desired in the sum of squares. Default: 1D-10

FUNCTARGS - A structure which contains the parameters to be passed
to the user-supplied function specified by MYFUNCT via
the EXTRA mechanism. This is the way you can pass
additional data to your user-supplied function without
using common blocks.

Consider the following example:
if FUNCTARGS = { XVAL:[1.D,2,3], YVAL:[1.D,4,9],

ERRVAL:[1.D,1,1] }
then the user supplied function should be declared
like this:
FUNCTION MYFUNCT, P, XVAL=x, YVAL=y, ERRVAL=err

By default, no extra parameters are passed to the
user-supplied function, but your function should
accept *at least* one keyword parameter. [This is to
accomodate a limitation in IDL"s _EXTRA
parameter-passing mechanism.]

GTOL - a nonnegative input variable. Termination occurs when the
cosine of the angle between fvec and any column of the
jJacobian is at most GTOL in absolute value (and STATUS is
accordingly set to 4). Therefore, GTOL measures the
orthogonality desired between the function vector and the
columns of the jacobian. Default: 1D-10

ITERARGS - The keyword arguments to be passed to ITERPROC via the
_EXTRA mechanism. This should be a structure, and is
similar in operation to FUNCTARGS.

Default: no arguments are passed.

ITERPRINT - The name of an IDL procedure, equivalent to PRINT,
that ITERPROC will use to render output. ITERPRINT
should be able to accept at least four positional
arguments. In addition, it should be able to accept
the standard FORMAT keyword for output formatting; and
the UNIT keyword, to redirect output to a logical file
unit (default should be UNIT=1, standard output).
These keywords are passed using the ITERARGS keyword
above. The ITERPRINT procedure must accept the EXTRA
keyword.

NOTE: that much formatting can be handled with the
MPPRINT and MPFORMAT tags.
Default: "MPFIT_DEFPRINT" (default internal formatter)

ITERPROC - The name of a procedure to be called upon each NPRINT
iteration of the MPFIT routine. ITERPROC is always
called in the final iteration. It should be declared
in the following way:

PRO ITERPROC, MYFUNCT, p, iter, fnorm, FUNCTARGS=fcnargs, $
PARINFO=parinfo, QUIET=quiet, DOF=dof, PFORMAT=pformat, $
UNIT=unit,

; perform custom iteration update

END

ITERPROC must either accept all three keyword
parameters (FUNCTARGS, PARINFO and QUIET), or at least
accept them via the _EXTRA keyword.

MYFUNCT is the user-supplied function to be minimized,
P is the current set of model parameters, ITER is the
iteration number, and FUNCTARGS are the arguments to be
passed to MYFUNCT. FNORM should be the chi-squared
value. QUIET is set when no textual output should be

printed. DOF is the number of degrees of freedom,
normally the number of points less the number of free
parameters. See below for documentation of PARINFO.
PFORMAT is the default parameter value format. UNIT is
passed on to the ITERPRINT procedure, and should
indicate the file unit where log output will be sent
(default: standard output).

In implementation, ITERPROC can perform updates to the
terminal or graphical user interface, to provide
feedback while the fit proceeds. |If the fit is to be
stopped for any reason, then ITERPROC should set the
common block variable ERROR_CODE to negative value
between -15 and -1 (see MPFIT_ERROR common block
below). In principle, ITERPROC should probably not
modify the parameter values, because it may interfere
with the algorithm®s stability. In practice it is
allowed.

Default: an internal routine is used to print the
parameter values.

ITERSTOP - Set this keyword if you wish to be able to stop the
fitting by hitting the predefined ITERKEYSTOP key on
the keyboard. This only works if you use the default
ITERPROC.

ITERKEYSTOP - A keyboard key which will halt the fit (and if
ITERSTOP is set and the default ITERPROC is used).
ITERSTOPKEY may either be a one-character string
with the desired key, or a scalar integer giving the
ASCI1 code of the desired key.
Default: 7b (control-g)

NOTE: the default value of ASCI 7 (control-G) cannot
be read in some windowing environments, so you must
change to a printable character like "q-°.

MAXITER - The maximum number of iterations to perform. If the
number of calculation iterations exceeds MAXITER, then
the STATUS value is set to 5 and MPFIT returns.

If MAXITER EQ O, then MPFIT does not iterate to adjust
parameter values; however, the user function is evaluated
and parameter errors/covariance/Jacobian are estimated
before returning.

Default: 200 iterations

MIN_VERSION - The minimum requested version number. This must be
a scalar string of the form returned by the VERSION
keyword. If the current version of MPFIT does not
satisfy the minimum requested version number, then,
MPFIT(/query, min_version="...") returns 0
MPFIT(...) returns NAN

Default: no version number check

NOTE: MIN_VERSION was added in MPFIT version 1.70

NFEV - the number of MYFUNCT function evaluations performed.

NFREE - the number of free parameters in the fit. This includes
parameters which are not FIXED and not TIED, but it does
include parameters which are pegged at LIMITS.

NITER - the number of iterations completed.

NOCATCH - if set, then MPFIT will not perform any error trapping.
By default (nhot set), MPFIT will trap errors and report
them to the caller. This keyword will typically be used
for debugging.

NOCOVAR - set this keyword to prevent the calculation of the
covariance matrix before returning (see COVAR)

NPEGGED - the number of free parameters which are pegged at a
LIMIT.

NPRINT - The frequency with which ITERPROC is called. A value of
1 indicates that ITERPROC is called with every iteration,
while 2 indicates every other iteration, etc. Be aware
that several Levenberg-Marquardt attempts can be made in
a single iteration. Also, the ITERPROC is *always*
called for the final iteration, regardless of the
iteration number.

Default value: 1

PARINFO - A one-dimensional array of structures.
Provides a mechanism for more sophisticated constraints
to be placed on parameter values. When PARINFO is not
passed, then it is assumed that all parameters are free
and unconstrained. Values in PARINFO are never
modified during a call to MPFIT.

See description above for the structure of PARINFO.
Default value: all parameters are free and unconstrained.

PERROR - The formal l1l-sigma errors in each parameter, computed
from the covariance matrix. If a parameter is held
fixed, or if it touches a boundary, then the error is
reported as zero.

IT the fit is unweighted (i.e. no errors were given, or
the weights were uniformly set to unity), then PERROR
will probably not represent the true parameter
uncertainties.

If you can assume that the true reduced chi-squared
value is unity -- meaning that the fit is implicitly
assumed to be of good quality -- then the estimated
parameter uncertainties can be computed by scaling PERROR
by the measured chi-squared value.

DOF = N_ELEMENTS(X) - N_ELEMENTS(PARMS) ; deg of freedom

PCERROR = PERROR * SQRT(BESTNORM / DOF) ; scaled
uncertainties

PFREE_INDEX - upon return, PFREE_INDEX contains an index array
which indicates which parameter were allowed to
vary. l.e. of all the parameters PARMS, only
PARMS[PFREE_INDEX] were varied.

QUERY - if set, then MPFIT(Q) will return immediately with one of
the following values:
1 - if MIN_VERSION is not set
1 - if MIN_VERSION is set and MPFIT satisfies the minimum
O - if MIN_VERSION is set and MPFIT does not satisfy it
The VERSION output keyword is always set upon return.
Default: not set.

QUIET - set this keyword when no textual output should be printed
by MPFIT

RESDAMP - a scalar number, indicating the cut-off value of
residuals where "damping™ will occur. Residuals with
magnitudes greater than this number will be replaced by
their logarithm. This partially mitigates the so-called
large residual problem inherent in least-squares solvers
(as for the test problem CURVI, http://www.maxthis.com/-
curviex.htm). A value of 0 indicates no damping.
Default: O

Note: RESDAMP doesn"t work with AUTODERIV=0

STATUS - an integer status code is returned. All values greater
than zero can represent success (however STATUS EQ 5 may
indicate failure to converge). It can have one of the
following values:

-18 a fatal execution error has occurred. More information
may be available in the ERRMSG string.

-16 a parameter or function value has become infinite or an
undefined number. This is usually a consequence of
numerical overflow in the user"s model function, which
must be avoided.

-15 to -1
these are error codes that either MYFUNCT or ITERPROC
may return to terminate the fitting process (see
description of MPFIT_ERROR common below). If either
MYFUNCT or ITERPROC set ERROR_CODE to a negative number,
then that number is returned in STATUS. Values from -15
to -1 are reserved for the user functions and will not
clash with MPFIT.

O improper input parameters.

1 both actual and predicted relative reductions
in the sum of squares are at most FTOL.

VERSION -

relative error between two consecutive iterates
is at most XTOL

conditions for STATUS = 1 and STATUS = 2 both hold.
the cosine of the angle between fvec and any
column of the jacobian is at most GTOL in

absolute value.

the maximum number of iterations has been reached

FTOL is too small. no further reduction in
the sum of squares is possible.

XTOL is too small. no further improvement in
the approximate solution x is possible.

GTOL is too small. fvec is orthogonal to the
columns of the jacobian to machine precision.

9 A successful single iteration has been completed, and

the user must supply another "EXTERNAL"™ evaluation of
the function and its derivatives. This status indicator
is neither an error nor a convergence indicator.

upon return, VERSION will be set to the MPFIT internal
version number. The version number will be a string of
the form "X_.Y" where X is a major revision number and Y
is a minor revision number.
NOTE: the VERSION keyword was not present before
MPFIT version number 1.70, therefore, callers must
use exception handling when using this keyword.

XTOL - a nonnegative input variable. Termination occurs when the

EXAMPLE:

pO
fa

relative error between two consecutive iterates is at most
XTOL (and STATUS is accordingly set to 2 or 3). Therefore,
XTOL measures the relative error desired in the approximate
solution. Default: 1D-10

[5.7D, 2.2, 500., 1.5, 2000.]
{X:x, Y:y, ERR:err}

p = mpFiIt("MYFUNCT", pO, functargs=fa)

Minimizes sum of squares of MYFUNCT. MYFUNCT is called with the X,
Y, and ERR keyword parameters that are given by FUNCTARGS. The
resulting parameter values are returned iIn p.

COMMON BLOCKS:

COMMON MPFIT_ERROR, ERROR_CODE

User routines may stop the fitting process at any time by
setting an error condition. This condition may be set in either

the user®"s model computation routine (MYFUNCT), or in the
iteration procedure (ITERPROC).

To stop the fitting, the above common block must be declared,
and ERROR_CODE must be set to a negative number. After the user
procedure or function returns, MPFIT checks the value of this
common block variable and exits immediately if the error
condition has been set. This value is also returned in the
STATUS keyword: values of -1 through -15 are reserved error
codes for the user routines. By default the value of ERROR_CODE
is zero, indicating a successful function/procedure call.

COMMON MPFIT_PROFILE
COMMON MPFIT_MACHAR
COMMON MPFIT_CONFIG

These are undocumented common blocks are used internally by
MPFIT and may change in future implementations.

THEORY OF OPERATION:

There are many specific strategies for function minimization. One
very popular technique is to use function gradient information to

realize the local structure of the function. Near a local minimum
the function value can be taylor expanded about x0 as follows:

T(X) = f(xX0) + F"(xX0) . (x-x0) + (1/2) (x-x0) . F*"(x0) . (x-x0)

Order Oth 1st 2nd

Here T (x) is the gradient vector of f at x, and f""(x) is the
Hessian matrix of second derivatives of f at x. The vector X is
the set of function parameters, not the measured data vector. One
can find the minimum of ¥, Ff(xm) using Newton"s method, and
arrives at the following linear equation:

" "(x0) . (xm-x0) = - 7 (x0))

ITf an inverse can be found for f""(x0) then one can solve for
(xm-x0), the step vector from the current position x0 to the new
projected minimum. Here the problem has been linearized (ie, the
gradient information is known to first order). Ff*""(x0) is
symmetric n X n matrix, and should be positive definite.

The Levenberg - Marquardt technique is a variation on this theme.
It adds an additional diagonal term to the equation which may aid the
convergence properties:

(F""(x0) + nu 1) . (xm-x0) = -F*(x0) (2a)

where 1 is the identity matrix. When nu is large, the overall
matrix is diagonally dominant, and the iterations follow steepest
descent. When nu is small, the iterations are quadratically
convergent.

In principle, if """ (x0) and *(x0) are known then xm-x0 can be
determined. However the Hessian matrix is often difficult or

impossible to compute. The gradient £ (x0) may be easier to
compute, if even by Finite difference techniques. So-called
quasi-Newton techniques attempt to successively estimate " (x0)
by building up gradient information as the iterations proceed.

In the least squares problem there are further simplifications
which assist in solving eqn (2). The function to be minimized is
a sum of squares:

f = Sum(hi~2) [©))

where hi i1s the ith residual out of m residuals as described
above. This can be substituted back into egn (2) after computing
the derivatives:

f-
f--

2 sum(hi hi")
2 Sum(hi® hj*) + 2 Sum¢hi hi®") @)

IT one assumes that the parameters are already close enough to a
minimum, then one typically finds that the second term in f*" is
negligible [or, in any case, is too difficult to compute]. Thus,
equation (2) can be solved, at least approximately, using only
gradient information.

In matrix notation, the combination of egns (2) and (4) becomes:
hT® . h® . dx = - hT" _ h o)

Where h is the residual vector (length m), hT is its transpose, h-”
is the Jacobian matrix (dimensions n x m), and dx is (xm-x0). The
user function supplies the residual vector h, and in some cases h*
when it is not found by finite differences (see MPFIT_FDJAC2,
which finds h and hT"). Even if dx is not the best absolute step
to take, it does provide a good estimate of the best *direction*,
so often a line minimization will occur along the dx vector
direction.

The method of solution employed by MINPACK is to form the Q . R
factorization of h", where Q is an orthogonal matrix such that QT .
Q = 1, and R is upper right triangular. Using h" = Q . R and the
ortogonality of Q, egn (5) becomes

(RT . QT) - (Q -.R) .dx=- (RT - QT) . h
RT R .dx=-RT . QT . h (6)
R.dx=-0QT . h

where the last statement follows because R is upper triangular.
Here, R, QT and h are known so this is a matter of solving for dx.
The routine MPFIT_QRFAC provides the QR factorization of h, with
pivoting, and MPFIT_QRSOL;V provides the solution for dx.

REFERENCES:

Markwardt, C. B. 2008, *"Non-Linear Least Squares Fitting in IDL
with MPFIT,"™ in proc. Astronomical Data Analysis Software and
Systems XVII1, Quebec, Canada, ASP Conference Series, Vol. XXX, eds.
D. Bohlender, P. Dowler & D. Durand (Astronomical Society of the

Pacific: San Francisco), p. 251-254 (ISBN: 978-1-58381-702-5)
http://arxiv.org/abs/0902.2850
Link to NASA ADS: http://adsabs.harvard.edu/abs/2009ASPC. .411..251M
Link to ASP: http://aspbooks.org/a/volumes/table_of_contents/411

Refer to the MPFIT website as:
http://purl_com/net/mpfit

MINPACK-1 software, by Jorge More®™ et al, available from netlib.
http://www.netlib.org/

"Optimization Software Guide,™ Jorge More® and Stephen Wright,
SIAM, *Frontiers in Applied Mathematics*, Number 14.
(ISBN: 978-0-898713-22-0)

More®", J. 1978, "The Levenberg-Marquardt Algorithm: Implementation
and Theory,"™ in Numerical Analysis, vol. 630, ed. G. A. Watson
(Springer-Verlag: Berlin), p. 105 (DOI: 10.1007/BFb0067690)

MODIFICATION HISTORY:

Translated from MINPACK-1 in FORTRAN, Apr-Jul 1998, CM

Fixed bug in parameter limits (X vs xnew), 04 Aug 1998, CM

Added PERROR keyword, 04 Aug 1998, CM

Added COVAR keyword, 20 Aug 1998, CM

Added NITER output keyword, 05 Oct 1998
D.L Windt, Bell Labs, windt@bell-labs.com;

Made each PARINFO component optional, 05 Oct 1998 CM

Analytical derivatives allowed via AUTODERIVATIVE keyword, 09 Nov 1998

Parameter values can be tied to others, 09 Nov 1998

Fixed small bugs (Wayne Landsman), 24 Nov 1998

Added better exception error reporting, 24 Nov 1998 CM

Cosmetic documentation changes, 02 Jan 1999 CM

Changed definition of ITERPROC to be consistent with TNMIN, 19 Jan 1999 CM

Fixed bug when AUTDERIVATIVE=0. Incorrect sign, 02 Feb 1999 CM

Added keyboard stop to MPFIT_DEFITER, 28 Feb 1999 CM

Cosmetic documentation changes, 14 May 1999 CM

IDL optimizations for speed & FASTNORM keyword, 15 May 1999 CM

Tried a faster version of mpfit _enorm, 30 May 1999 CM

Changed web address to cow.physics.wisc.edu, 14 Jun 1999 CM

Found malformation of FDJAC in MPFIT for 1 parm, 03 Aug 1999 CM

Factored out user-function call into MPFIT_CALL. It is possible,
but currently disabled, to call procedures. The calling format
is similar to CURVEFIT, 25 Sep 1999, CM

Slightly changed mpFfit_tie to be less intrusive, 25 Sep 1999, CM

Fixed some bugs associated with tied parameters in mpfit fdjac, 25
Sep 1999, CM

Reordered documentation; now alphabetical, 02 Oct 1999, CM

Added QUERY keyword for more robust error detection in drivers, 29
Oct 1999, CM

Documented PERROR for unweighted fits, 03 Nov 1999, CM

Split out MPFIT_RESETPROF to aid in profiling, 03 Nov 1999, CM

Some profiling and speed optimization, 03 Nov 1999, CM
Worst offenders, in order: fdjac2, qrfac, grsolv, enorm.
fdjac2 depends on user function, gqrfac and enorm seem to be
fully optimized. qrsolv probably could be tweaked a little, but
is still <10% of total compute time.

Made sure that lerr was set to O in MPFIT_DEFITER, 10 Jan 2000, CM

Fixed small inconsistency in setting of QANYLIM, 28 Jan 2000, CM

Added PARINFO field RELSTEP, 28 Jan 2000, CM

Converted to MPFIT_ERROR common block for indicating error
conditions, 28 Jan 2000, CM

Corrected scope of MPFIT_ERROR common block, CM, 07 Mar 2000

Minor speed improvement in MPFIT_ENORM, CM 26 Mar 2000

Corrected case where ITERPROC changed parameter values and
parameter values were TIED, CM 26 Mar 2000

Changed MPFIT_CALL to modify NFEV automatically, and to support
user procedures more, CM 26 Mar 2000

Copying permission terms have been liberalized, 26 Mar 2000, CM

Catch zero value of zero a(j,1j) in MPFIT_QRFAC, 20 Jul 2000, CM

(thanks to David Schlegel <schlegel@astro.princeton.edu>)

MPFIT_SETMACHAR is called only once at init; only one common block
is created (MPFIT_MACHAR); it is now a structure; removed almost
all CHECK _MATH calls for compatibility with IDL5 and !EXCEPT;
profiling data is now In a structure too; noted some
mathematical discrepancies in Linux IDL5.0, 17 Nov 2000, CM

Some significant changes. New PARINFO fields: MPSIDE, MPMINSTEP,
MPMAXSTEP. Improved documentation. Now PTIED constraints are
maintained in the MPCONFIG common block. A new procedure to
parse PARINFO fields. FDJAC2 now computes a larger variety of
one-sided and two-sided finite difference derivatives. NFEV is
stored in the MPCONFIG common now. 17 Dec 2000, CM

Added check that PARINFO and XALL have same size, 29 Dec 2000 CM

Don"t call function in TERMINATE when there is an error, 05 Jan
2000

Check for float vs. double discrepancies; corrected implementation
of MIN/MAXSTEP, which I still am not sure of, but now at least
the correct behavior occurs *without* it, CM 08 Jan 2001

Added SCALE_FCN keyword, to allow for scaling, as for the CASH
statistic; added documentation about the theory of operation,
and under the QR factorization; slowly I"m beginning to
understand the bowels of this algorithm, CM 10 Jan 2001

Remove MPMINSTEP field of PARINFO, for now at least, CM 11 Jan
2001

Added RESDAMP keyword, CM, 14 Jan 2001

Tried to improve the DAMP handling a little, CM, 13 Mar 2001

Corrected _PARNAME behavior in _DEFITER, CM, 19 Mar 2001

Added checks for parameter and function overflow; a new STATUS
value to reflect this; STATUS values of -15 to -1 are reserved
for user function errors, CM, 03 Apr 2001

DAMP keyword is now a TANH, CM, 03 Apr 2001

Added more error checking of float vs. double, CM, 07 Apr 2001

Fixed bug in handling of parameter lower limits; moved overflow
checking to end of loop, CM, 20 Apr 2001

Failure using GOTO, TERMINATE more graceful if FNORM1 not defined,
CM, 13 Aug 2001

Add MPPRINT tag to PARINFO, CM, 19 Nov 2001

Add DOF keyword to DEFITER procedure, and print degrees of
freedom, CM, 28 Nov 2001

Add check to be sure MYFUNCT is a scalar string, CM, 14 Jan 2002

Addition of EXTERNAL FJAC, EXTERNAL_FVEC keywords; ability to save
fitter®s state from one call to the next; allow *(EXTERNAL)*
function name, which implies that user will supply function and
Jacobian at each iteration, CM, 10 Mar 2002

Documented EXTERNAL evaluation code, CM, 10 Mar 2002

Corrected signficant bug in the way that the STEP parameter, and
FIXED parameters interacted (Thanks Andrew Steffl), CM, 02 Apr
2002
Allow COVAR and PERROR keywords to be computed, even in case of
"(EXTERNAL)*" function, 26 May 2002
Add NFREE and NPEGGED keywords; compute NPEGGED; compute DOF using
NFREE instead of n_elements(X), thanks to Kristian Kjaer, CM 11
Sep 2002
Hopefully PERROR is all positive now, CM 13 Sep 2002
Documented RELSTEP field of PARINFO (!!), CM, 25 Oct 2002
Error checking to detect missing start pars, CM 12 Apr 2003
Add DOF keyword to return degrees of freedom, CM, 30 June 2003
Always call ITERPROC in the final iteration; add ITERKEYSTOP
keyword, CM, 30 June 2003
Correct bug in MPFIT_LMPAR of singularity handling, which might
likely be fatal for one-parameter fits, CM, 21 Nov 2003
(with thanks to Peter Tuthill for the proper test case)
Minor documentation adjustment, 03 Feb 2004, CM
Correct small error in QR factorization when pivoting; document
the return values of QRFAC when pivoting, 21 May 2004, CM
Add MPFORMAT field to PARINFO, and correct behavior of interaction
between MPPRINT and PARNAME in MPFIT_DEFITERPROC (thanks to Tim
Robishaw), 23 May 2004, CM
Add the ITERPRINT keyword to allow redirecting output, 26 Sep
2004, CM
Correct MAXSTEP behavior in case of a negative parameter, 26 Sep
2004, CM
Fix bug in the parsing of MINSTEP/MAXSTEP, 10 Apr 2005, CM
Fix bug in the handling of upper/lower limits when the limit was
negative (the fitting code would never "stick" to the lower
limit), 29 Jun 2005, CM
Small documentation update for the TIED field, 05 Sep 2005, CM
Convert to IDL 5 array syntax (1), 16 Jul 2006, CM
IT MAXITER equals zero, then do the basic parameter checking and
uncertainty analysis, but do not adjust the parameters, 15 Aug
2006, CM
Added documentation, 18 Sep 2006, CM
A few more IDL 5 array syntax changes, 25 Sep 2006, CM
Move STRICTARR compile option inside each function/procedure, 9 Oct 2006
Bug fix for case of MPMAXSTEP and fixed parameters, thanks
to Huib Intema (who found it from the Python translation!), 05 Feb 2007
Similar fix for MPFIT_FDJAC2 and the MPSIDE sidedness of
derivatives, also thanks to Huib Intema, 07 Feb 2007
Clarify documentation on user-function, derivatives, and PARINFO,
27 May 2007
Change the wording of "Analytic Derivatives™ to "Explicit
Derivatives" in the documentation, CM, 03 Sep 2007
Further documentation tweaks, CM, 13 Dec 2007
Add COMPATIBILITY section and add credits to copyright, CM, 13 Dec
2007

Document and enforce that START_PARMS and PARINFO are 1-d arrays,
CM, 29 Mar 2008

Previous change for 1-D arrays wasn"t correct for
PARINFO_LIMITED/.LIMITS; now fixed, CM, 03 May 2008

Documentation adjustments, CM, 20 Aug 2008

Change some minor FOR-loop variables to type-long, CM, 03 Sep 2008

Change error handling slightly, document NOCATCH keyword,

document error handling in general, CM, 01 Oct 2008

Special case: when either LIMITS is zero, and a parameter pushes
against that limit, the coded that "pegged” it there would not
work since it was a relative condition; now zero is handled
properly, CM, 08 Nov 2008

Documentation of how TIED interacts with LIMITS, CM, 21 Dec 2008

Better documentation of references, CM, 27 Feb 2009

IT MAXITER=0, then be sure to set STATUS=5, which permits the
the covariance matrix to be computed, CM, 14 Apr 2009

Avoid numerical underflow while solving for the LM parameter,
(thanks to Sergey Koposov) CM, 14 Apr 2009

Use individual functions for all possible MPFIT_CALL permutations,
(and make sure the syntax is right) CM, 01 Sep 2009

Correct behavior of MPMAXSTEP when some parameters are frozen,
thanks to Josh Destree, CM, 22 Nov 2009

Update the references section, CM, 22 Nov 2009

1.70 - Add the VERSION and MIN_VERSION keywords, CM, 22 Nov 2009

1.71 - Store pre-calculated revision in common, CM, 23 Nov 2009

1.72-1.74 - Documented alternate method to compute correlation matrix,

CM, 05 Feb 2010
1.75 - Enforce TIED constraints when preparing to terminate the
routine, CM, 2010-06-22

1.76 - Documented input keywords now are not modified upon output,
CM, 2010-07-13

1.77 - Upon user request (/CALC FJAC), compute Jacobian matrix and
return in BEST_FJAC; also return best residuals in
BEST_RESID; also return an index list of free parameters as
PFREE_INDEX; add a fencepost to prevent recursion
CM, 2010-10-27

1.79 - Documentation corrections. CM, 2011-08-26

1.81 - Fix bug in interaction of AUTODERIVATIVE=0 and _MPSIDE=3;

Document FJAC_MASK. CM, 2012-05-08

Add accomodation for PDIF_ITER DISPLAY and PDIF_ITER_COUNT
tagnames to the FCNARGS keyword. If FCNARGS.PDIF_ITER_DISPLAY is
set to 1 when mpfit is called, then FCNARGS.PDIF_ITER_COUNT is set
during computation of partial derivatives to the index of the
partial derivative being computed. This allows the calling
program to display the iteration count in real

time. 13-May-2013. D. L. Windt, Reflective X-ray Optics,
davidwindt@gmail.com

$1d: mpfit.pro,v 1.82 2012/09/27 23:59:44 cmarkwar Exp $

(See ./mpfit.pro)

OEPLOT

[Previous Routine] [Next Routine] [List of Routines]
NAME -

OEPLOT
PURPOSE:
Overplot x vs y, with vertical error bars on y.
CALLING SEQUENCE:
OEPLOT,Y,SIGY
OEPLOT, X,Y,SIGY
OEPLOT,Y,SIGY_UP,SIGY_DOWN
OEPLOT,X,Y,SIGY_UP,SIGY_DOWN
INPUTS:
X, Y - 1-D arrays
SIGY - Uncertainty in vy, i.e. Y+/-SIGY

SIGY_UP, SIGY_DOWN - +/- uncertainties in Y,
i.e., Y +SIGY_UP -SIGY_DOWN

KEYWORD PARAMETERS:
BARLINESTYLE = Linestyle for error bars.

plus the IDL keywords color, linestyle,thick, psym,
symsize, noclip, and t3d.

MODIFICATION HISTORY:

D. L. Windt, Bell Laboratories, November 1989
windt@bell-labs.com

(See ./oeplot.pro)

PLOT_MOVIE

[Previous Routine] [Next Routine] [List of Routines]
NAME :

PLOT_MOVIE
PURPOSE:

Display an animated sequence of X-Y plots in a window.
CALLING SEQUENCE:

PLOT_MOVIE,X,Y[,Y1,Y2,Y3,Y4]

INPUT PARAMETERS:

X

N_x-element array, common to all Y vectors

Y

2D array, N_x x N_plots
OPTIONAL INPUT PARAMETERS:

Y1, Y2, Y3, Y4 - additional Y arrays to be overplotted; these
must all have the same dimensions as Y.

KEYWORD PARAMETERS:

XRANGE- A two-element vector specifying the xrange of the
plot. Default = [0, max(xX)]

YRANGE- A two-element vector specifying the yrange of the
plot. Default = [0 < min(y)*1.05,max(y)*1.05]

COLOR- array of colors for each Y plot
LINESTYLE - array of linestyles for each Y plot
THICK - array of thicknesses for each Y plot

_EXTRA - This keyword is use to pass additional parameters to
the plot command.

EXAMPLE:
Make a movie of two "travelling® sin waves:
X=VECTOR(0.,100.,100)
Y=FLTARR(100,30)
for 1=0,29 do Y(*,i)=sin((x+i*!pi)/Ipi)
Y1l=-Y
PLOT_MOVIE,X,Y,Y1
MODIFICATION HISTORY:
Written by: David L. Windt, Bell Labs, April 1994

windt@bell-labs.com

(See ./plot_movie.pro)

PLOT_PRINT

[Previous Routine] [Next Routine] [List of Routines]
NAME -

PLOT_PRINT

PURPOSE:

A widget-based interface for creating and printing IDL
graphics output files. The widget allows the user to
select an output device type (PS, PCL, or HP), and specify
whether or not to use color, the color depth (for PS), the
plot orientation (landscape or portrait), the size of the
plot, whether or not to use Vector or PS fonts, the name of
the file to create, whether to send the file to a printer,
and the print command.

CALLING SEQUENCE:
PLOT_PRINT,PLOT_PROCEDURE

INPUTS:
PLOT_PROCEDURE - A string containing the name of the
procedure - or the executable IDL code - that
creates the desire graphics. See EXAMPLE
below for more details.

KEYWORD PARAMETERS:

PRINTPARS - a structure of the following form (default
values indicated), whose values are used to
set the initial value of this quasi-compound widget:

PRINTPARS={ $
device:0, $; 0=PS, 1=HP, 2=PCL, 3=CGM

psfont:0, $; O=use vector fonts, l=use PS fonts.

color:1, $; 0=B&W, 1=color

depth:2, $; PS resolution: 0=>1, 1=>2, 2=>4, 4=>8.

orient:0, $; O=portrait, 1l=landscape

size:1l, $; O=small, l1l=large, 2=custom (i.e., use
plotsize)

plotsize:[xsize,ysize,xoffset,yoffset], $

; keyword to the DEVICE command,

; In inches. only used if size=2.
file_name:"idl.ps®, $; default file name
print:1, $; O=print only to file, l=send to printer.
command: " Ipr -PIp"} ; print command

GROUP - the standard GROUP_LEADER keyword, which is passed directly
to XMANAGER when the PLOT_PRINT widget is created.

COMMON BLOCKS:
PLOT_PRINT, plot_printpars

where plot_printpars = the current state of
the printpars structure.

SIDE EFFECTS:

The returned value of the printpars structure, If passed,
is changed to reflect the settings changes made by the

user. Thus, settings shown in the widget upon subsequent
calls to plot print with the same printpars structure will
show the same settings as the last call to PLOT_PRINT.

RESTRICTIONS:

Requires widgets. Requires several programs in the windt
library, including a modified version of CW_FIELD.

The PLOT_PRINT widget is modal.
EXAMPLE:

This program is intended to be used from within another
widget application, where a procedure is already defined
that creates the graphics. You can then add a WIDGET_BUTTON
to this application, labelled "Print"”, for example, that
when pressed calls PLOT_PRINT, with the name of the plot
creation procedure as the input. i.e., pressing the "Print"”
button would execute the IDL code < PLOT_PRINT,"myplot" >.

For example:
PRO MYPLOT_EV,event

widget _control,event.id,get uvalue=eventval

if eventval eq “print® then plot_print,*myplot_plot~

if eventval eq "done” then widget control,event.top,/destroy
return

end

PRO MYPLOT_PLOT

plot,[1,2],title="My Plot~
return
end

PRO MYPLOT

base=widget_base(mbar=menubar)
file=widget_button(menubar,/menu,value="File")
print=widget_button(file,value="Print...",uvalue="print")
done=widget_button(Ffile,value="Quit" ,uvalue="done")
window=widget_draw(base,xsize=400,ysize=300)
widget_control ,base,/realize

myplot_plot

xmanager, "myplot” ,base,event="myplot_ev~

return

end

Of course, you can call the program right from the command
line too, as in

IDL> plot_print, "x=vector(0.,!pi,100) & y=sin(5*x) &
plot,x,y,/xstyle*

MODIFICATION HISTORY:

David L. Windt, Bell Labs, March 1997

May 1997 - Modified use of MODAL keyword to work with
changes in IDL V5.0.

June 1997 - Changed text and field widgets so that it"s no
longer necessary to hit <return> after entering
text. But this requires use of the modified
CW_FIELD widget.

January 1998 - Added support for CGM graphics; switched
plot_print.device values for HP and PCL
output, to be consistent with the SP_PRO
routine.

March 1998 - Made some attempt to include a better default
print command for HP-UX and Win95 platforms.

May 1998 - The user is now prompted before attempting to
write over an existing file.

January 2004 - Various cosmetics.
windt@bell-labs.com

DLW, June 2003

Slight change to label widget displaying status.
windt@astro.columbia.edu

DLW, May 2013 - Improved permission error handling.

davidwindt@gmail.com

(See ./plot_print.pro)

PLOT_TEXT

[Previous Routine] [Next Routine] [List of Routines]
NAME -

PLOT_TEXT

PURPOSE:
Add text in a box to a plot. The text is located in one
of 12 possible positions (i.e., upper left corner, lower

right corner, etc.)

CALLING SEQUENCE:

PLOT_TEXT,TEXT_ARRAY[,POSITION=POSITION]
INPUTS:
TEXT_ARRAY - a string array of text
KEYWORD PARAMETERS:
POSITION - an integer, specifying the location of the text box:

: no text is drawn
1: below plot, left
2: below plot, center
3: below plot, right

: lower left
5: lower center
6: lower right

: middle left
8: middle center

: middle right
10: upper left
11: upper center
12: upper right

iT not specified, default position=10
CHARSIZE - the charsize value for the text
COLOR - an array of colors to be used for each line of text
NOBOX - set to inhibit drawing a box around the text

BOXPADX - padding in character units, between text and box,
in x. default=2.0

BOXPADY - padding in character units, between text and box,
in y. default=0.5

FONT - Set to an integer from 3 to 20, corresponding to the
Hershey vector font sets, referring to the font used
to display the text. If a font other than !3 is used
in the text string, then FONT should be set
accordingly. (Any font commands embedded in the text
string are ignored.)

BOXFUDGEX - A scaling factor, used to fudge the width of the
box surrounding the text. Default=1.0.

BOXCOLOR - set to the color index used to draw the box.
Default is 'P.COLOR.

BOXFILL - set to the color index used to fill the box. Omit,
or set to -1 for no fill. No effect if NOBOX=1.

Plus all valid graphics keywords for xyouts and plots

RESTRICTIONS:
When specifying a position of 1,2 or 3, you™ll need to (a) use
the same charsize value for the plot and for the plot_text,
and (b) draw the plot with an extra ymargin(0). 1i.e., set
ymargin(0)=7+n_elements(text_array)

MODIFICATION HISTORY:

David L. Windt, Bell Labs, March 1997
windt@bell-labs.com

May 2011, dlw:

Now using WIDTH keyword from XYOUTS to do an even better job of
drawing the box.

October, 1997, dlw:

Now using the TEXT_WIDTH function, iIn order to do a somewhat
better job of drawing the box around the text.

NONPRINTER_SCALE keyword parameter is now obsolete.
BOXFUDGEX keyword parameter added.

May 2013 - Added BOXCOLOR and BOXFILL.
DLW, davidwindt@gmail.com

(See ./plot_text.pro)

PROFILE_NI

[Previous Routine] [Next Routine] [List of Routines]
NAME -

PROFILE_NI
PURPOSE:

Extract a profile from an image noninteractively.
CALLING SEQUENCE:

Result = PROFILE_NI(IMAGE,COORDS)
INPUTS:

IMAGE - data array. May be any type except complex.

COORDS - 2 x 2 array of x and y coordinate of profile endpoints,
[[x0,Y0], [X1,Y1]]

KEYWORD PARAMETERS:

XSTART, YSTART - starting (X,y) location of lower left corner
of image.

OUTPUTS:

Result = 1-D array of image values along the line from
MODIFICATION HISTORY:

Adapted from PROFILE

D. L. Windt, Bell Laboratories, November 1991.
windt@bell-labs.com

(See ./profile_ni.pro)

PTRS_NEW

[Previous Routine] [Next Routine] [List of Routines]
NAME -

PTRS_NEW
PURPOSE :
This function will make a copy of the passed variable, which
can be of any type. However if it"s a pointer, an array of
pointers, a structure, or any array of structures, then the
entire hierarchy will be searched until all pointers are
replaced with new pointers, so that the copy will not point to
anything that the original passed variable points to.
CALLING SEQUENCE:
DEST=PTRS_NEW(SOURCE)
INPUTS:
SOURCE: Variable of any type.
OUTPUTS:
DEST: the destination variable, which is an exact copy of the

source variable SOURCE, except that all pointers contained in
the returned variable will be new.

MODIFICATION HISTORY:

David L. Windt, Reflective X-ray Optics, davidwindt@gmail.com
14-May-2013

(See ./ptrs_new.pro)

PWD

[Previous Routine] [Next Routine] [List of Routines]
NAME -

PWD
CATEGORY:

Stupid little convenience routines.
PURPOSE:

Print the current directory, like the Unix "pwd®" command.
CALLING SEQUENCE:

PWD
MODIFICATION HISTORY:

David L. Windt, Bell Labs, February 1998
windt@bell-labs.com

(See ./pwd.pro)

RECROI

[Previous Routine] [Next Routine] [List of Routines]
NAME -

RECROI
PURPOSE:

Define a rectangular region of interest of an image using the
image display system and the cursor/mouse.

CATEGORY:
Image processing.
CALLING SEQUENCE:

Result=RECROI (SX,SY[,XVERTS, YVERTS])
INPUTS:
SX, SY = size of image, in pixels.
KEYWORD PARAMETERS:

X0, YO - coordinate of lower left corner of image on display.
if omitted, (0,0) is assumed. Screen device
coordinates.

Z00OM - zoom factor, if omitted, 1 is assumed.

XAX1S, YAXIS - optional 1-d arrays corresponding to the x and
y scales of image. Needed only if XROl and/or
YROI are specified.

XROI, YROI - optional output vectors associated with the
digitized rectangular region of interest. XAXIS
and YAXIS keyword parameters must be supplied.

OUTPUTS:

Result = vector of subscripts of pixels inside the region.

OPTIONAL OUTPUTS:

XVERTS, YVERTS - optional output parameters which will contain
the vertices enclosing the region. Setting
NOREGION inhibits the return of the pixel
subscripts.

COMMON BLOCKS:

Colors is used to obtain the current color table which is modified
and then restored.

SIDE EFFECTS:

For this implementation, bit 0 of each pixel is used to draw
outline of the region. You WILL have to change this to fit
the capabilities and procedures of your display. ; The lowest
bit In which the write mask is enabled is changed.

; the

PROCEDURE:

The write mask for the display is set so that only bit 0 may be
written. Bit O is erased for all pixels. The color tables

are loaded with odd values complemented, even values

unchanged. A message is printed, assuming a mouse, indicating

the effect of the three buttons. The operator marks opposite
corners of the rectangle.

MODIFICATION HISTORY:
Adapted from DEFROI

D. L. Windt, Bell Laboratories, November 1989
windt@bell-labs.com

(See ./recroi.pro)

RECTANGLE

[Previous Routine] [Next Routine] [List of Routines]
NAME -

RECTANGLE
PURPOSE:
Draw a rectangle on a plot.
CALLING SEQUENCE:
RECTANGLE, X0, YO, XLENGTH, YLENGTH
INPUTS:
X0, YO - Points specifying a corner of the rectangle.

XLENGTH, YLENGTH - the lengths of the sides of the rectangle,
in data coords.

KEYWORD PARAMETERS:
FILL = set to fill rectangle.
FCOLOR = Fill color.

Graphics keywords: CHARSIZE,COLOR,LINESTYLE,NOCLIP,
T3D,THICK,Z,LINE_FILL,ORIENTATION,DEVICE

MODIFICATION HISTORY:
D. L. Windt, Bell Laboratories, September 1990.
Added device keyword, January 1992.

windt@bell-labs.com

(See ./rectangle.pro)

REC_IMAGE

[Previous Routine] [Next Routine] [List of Routines]
NAME -

REC_IMAGE
PURPOSE:

Extract a rectangular portion of a previously displayed image.
CALLING SEQUENCE:

SMALL_ IMAGE=REC_ IMAGE(BI1G_IMAGE)
INPUTS:

BIG_IMAGE = array containing original image
OUTPUTS:

SMALL_IMAGE = portion of big_image
PROCEDURE:

RECROI 1is used to digitize a portion of the image.
MODIFICATION HISTORY:

David L. Windt, Bell Labs, Feb. 1992.
windt@bell-labs.com

(See ./rec_image.pro)

ROI_WIDTH

[Previous Routine] [Next Routine] [List of Routines]
NAME -

ROI_WIDTH
PURPOSE:

Measure the width of a region of curve that has been previously

plotted. The region is defined to be within ymin and ymax of a
digitized region of the curve.

CALLING SEQUENCE:
Result=ROI_WIDTH(XAXIS, YAXIS)
INPUTS:
XAXIS - the x axis variable which has been plotted.
YAXIS - the y axis variable which has been plotted.
KEYWORD PARAMETERS:
YMIN - minimum value of digitized region of interest.
YMAX - maximum value of digitized region of interest.

NOHIGHLIGHT - set to inhibit highlighting the region of
interest.

H_COLOR - the color index for highlighting the region of
interest. Default is 7 (Yellow).

H THICK - the thickness for highlighting the region of
interest.

NOLABEL - set to inhibit labelling fwhm.

MANUAL - set to disable automatic location selection for
labels.

L _HEADER - string specifying the label header. Default-"".
L COLOR - color index for the label.
L_FORMAT - format string for label (eg. "(f4.2)").
UNITS - string specifying units along x axis.
CHARSIZE - size of label text.
PSYM - psym
OUTPUTS:

Result - the full-with-half-max of the region of interest of
the curve, in x-axis data units.

OPTIONAL OUTPUT PARAMETERS:
ROl - the subscripts of the digitized region of interest.

WIDTH_ROIl - the subscripts of the region between the ymin and
ymax points.

LINE_PTS - a 4-element array containing the coordinates of the
line drawn on the plot: [x0,x1,y0,y1l]

LABEL - the label for the plot.
L POS - a two element array containing the X,y coordinates of
the label, in data coords.
SIDE EFFECTS:
TEK_COLOR is used to load in the tektronix colors.
The region of interest of the curve is highlighted.
The width is labelled.
RESTRICTIONS:
The data must be plotted prior to calling ROI_WIDTH
PROCEDURE:
The user is asked to digitize the endpoints of the
region of interest with the mouse. The region is
highlighted, and the width is labelled.
MODIFICATION HISTORY:

D. L. Windt, Bell Laboratories, October 1990.
windt@bell-labs.com

(See ./roi_width.pro)

ROTATION

[Previous Routine] [Next Routine] [List of Routines]
NAME -

ROTATION
PURPOSE:

Rotate two vectors by a specified amount.
CALLING SEQUENCE:

ROTATION, X,Y,DEG,NX,NY
INPUTS:

X,Y corignal data point pairs

DEG :degrees to rotate.
OUTPUTS:

Nx, Ny = rotated point pairs.
MODIFICATION HISTORY:

Jeff Bennett, U of Colorado

(See ./rotation.pro)

ROT MAT

[Previous Routine] [Next Routine] [List of Routines]
NAME -

ROT_MAT
PURPOSE:

Return a 2D rotation matrix.
CALLING SEQUENCE:

Result = ROT_MAT(Angle)
INPUTS:

Angle - Rotation angle in degrees.
OUTPUTS:

Result = [[cos(Angle*!dtor),-sin(Angle*!dtor)],
[sin(Angle*!ldtor), cos(Angle*!ldtor)]

EXAMPLE:
To rotate a vector X by an angle Theta:

X=[0.1,0.9]
X_=ROT_MAT(Theta)##X

MODIFICATION HISTORY:
David L. Windt, December 2003

windt@astro.columbia.edu

(See ./rot_mat.pro)

RXO COLOR

[Previous Routine] [Next Routine] [List of Routines]
NAME -

RXO_COLOR

PURPOSE: Load a color table for the first 32 colors, exactly as the
TEK_COLOR procedure does. However this procedure uses
different colors for the top 16 color indices, presenting a
broader choice of colors for plotting.

CATEGORY:
Graphics.

CALLING SEQUENCE:
RXO_COLOR [[, Start_index] , Ncolors]

INPUTS:
Start_index = optional starting index of palette. If omitted,
use O.
Ncolors = Number of colors to load. 32 is the max and the default.
KEYWORD PARAMETERS:
None.
OUTPUTS:
No explicit outputs.
COMMON BLOCKS:
Colors.
SIDE EFFECTS:
Ncolors color indices, starting at Start _index are loaded with
the Tektronix 4115 default color map.
RESTRICTIONS:
None.
PROCEDURE:
Just copy the colors. This table is useful for the
display of graphics in that the colors are distinctive.

Basic colors are: 0 - black, 1 - white, 2 - red, 3 - green,

4 - blue, 5 - cyan, 6 - magenta, 7 - yellow, 8 - orange, etc.
MODIFICATION HISTORY:

DMS, Jan, 1989.

DMS, June, 1992. Added colors common.

DMS, Apr, 1993, Added start _index and ncolors.

D.Windt, May 2013: same as TEK COLOR, but top 16 colors are
different.

(See ./rxo_color.pro)

SECONDS2CLOCK

[Previous Routine] [Next Routine] [List of Routines]
NAME -

SECONDS2CLOCK
PURPOSE:

Convert a time value from seconds to a string of the form
""DAYS:HOURS:MINUTES : SECONDS . FRACT IONAL__SECONDS""

CALLING SEQUENCE:

Result = SECONDS2CLOCK(Time)
INPUTS:

Time - Time value in seconds.
KEYWORDS:

SECONDS_FORMAT = IDL format code used to display value of
SECONDS.FRACTIONAL_SECONDS. Default is "(F4.1)".

OUTPUTS:

This function returns a string constant.
EXAMPLE:

X=SECONDS2CLOCK(106272.)
MODIFICATION HISTORY:

David L. Windt, Columbia University, 10-Jul-2003
windt@astro.columbia.edu

(See ./seconds2clock.pro)

SHIFT_PLOT

[Previous Routine] [Next Routine] [List of Routines]
NAME -

SHIFT_PLOT
PURPOSE:

Interactively slide a previously plotted array using the mouse.

CALLING SEQUENCE:
SHIFT_PLOT,X[,Y,SHIFT=SHIFT]
INPUTS:
X,Y - array variables
KEYWORD PARAMETERS:
Same as for oplot
OPTIONAL OUTPUT PARAMETERS:
SHIFT - the shift along the x-axis
PROCEDURE:

MENUS is used to get input. The previously plotted array is first
erased, then oplot"ed, with the incremental shift.

MODIFICATION HISTORY:

David L. Windt, Bell Labs, February, 1990
windt@bel l-labs.com

(See ./shift_plot.pro)

SHOW CT

[Previous Routine] [Next Routine] [List of Routines]
NAME -

SHOW_CT
PURPOSE :

Make a window and show the Ffirst 32 colors in the current
color table.

CALLING SEQUENCE:
SHOW_CT
MODIFICATION HISTORY:

David L. Windt, Bell Labs, November 1989
windt@bell-labs.com

DLW, November, 1997 - Removed default window position values, so
that the window is now visible on any

size display.

(See ./show_ct.pro)

SINC

[Previous Routine] [Next Routine] [List of Routines]
NAME -

SINC
PURPOSE:

Function to return the value of the SINC function,
i.e., sin(X)/x.

CALLING SEQUENCE:

Result = SINC(X)

INPUTS:

X - Input value. Scalar or array.
OUTPUTS:

Result - Value of SIN(X)/X.
PROCEDURE:

Straightforward; except Result is explicitly set to
one when X=0.

MODIFICATION HISTORY:
David L. Windt, Bell Laboratories, May 1997
March 1999:
Returned X values are no longer changed when X=1.
DLW (thanks to Paul Woodford.)

windt@bell-labs.com

(See ./sinc.pro)

SINCSQUARE_FIT

[Previous Routine] [Next Routine] [List of Routines]
NAME -

SINCSQUARE_FIT
PURPOSE:

Fit y=F(x) where:

F(x) = a0*(sin(al*(x-a2))/(al*(x-a2)))2 + a3

Estimate the parameters a0,al,a2,a3 and then call curvefit.
CALLING SEQUENCE:

YFIT = SINC_FIT(X,Y,A)
INPUTS:

X - independent variable, must be a vector.

Y - dependent variable, must have the same number of points as
X.

OUTPUTS:

YFIT = fitted function.
OPTIONAL OUTPUT PARAMETERS:

A = Fit coefficients. A four element vector as described above.
MODIFICATION HISTORY:

Adapted from GAUSSFIT

D. L. Windt, Bell Laboratories, March, 1990
windt@bell-labs.com

(See ./sincsquare_fit.pro)

SMALL_WINDOW

[Previous Routine] [Next Routine] [List of Routines]
NAME -

SMALL_WINDOW
PURPOSE:

Make a 500x400 graphics window.

CATEGORY:

Stupid little convenience routines.
CALLING SEQUENCE:

SMALL_WINDOW [,WINDOW_NUM]
OPTIONAL INPUT PARAMETERS:

WINDOW_NUM - the window number.
KEYWORD PARAMETERS:

LAPTOP - set this to make a nice window (400x300) for a
small-screened laptop

MODIFICATION HISTORY:

David L. Windt, Bell Laboratories, March 1990.
windt@bell-labs.com

(See ./small_window.pro)

SP

[Previous Routine] [Next Routine] [List of Routines]
NAME -

SP
PURPOSE:

Execute SET _PLOT, and optionally some handy settings.
CALLING SEQUENCE:

SP[,DEVICE,N_PLOTS]
OPTIONAL INPUTS:

DEVICE = 0 for set _plot, "PS*
for set_plot, "HP*
for set_plot, "PCL"
for set _plot, "X*

for set_plot, "MAC*
for set_plot, "WIN*
for set_plot, "SUN*
for set_plot, "TEK"

NOoOOhhWNRE

8 for set_plot,"CGM*"

if DEVICE is not set, the graphics device will be set
to the platform-dependent default.

N_PLOTS = 1 for 'p.multi=0

2 for lp.multi=[0,1,2]
3 for !p.multi=[0,1,3]
4 for !'p.multi=[0,2,2]

KEYWORD PARAMETERS:
SMALL - Set to make a small plot.
LANDSCAPE - Set for landscape mode when device=0,1, or 2.

FULL_PAGE - Set for full page plotting when device=0, 1,
or 2. Only has an effect when in portrait mode
(landscape=0) for PS and PCL devices.

FULL _PAGE is set automatically if N_PLOTS is
greater than 1.

HARDWARE - Set for hardware fonts.

FILE - Name of output file.

ISOTROPIC - Set for isotropic (equal x and y) scaling.
COLOR - Set to enable color for PS and PCL devices.

PLOTSIZE - A four-element array specifying the

[XSI1ZE,YSI1ZE ,XOFFSET,YOFFSET] keywords (in
INCHES) to the DEVICE procedure. |1f PLOTSIZE
is set, then the SMALL and FULL_PAGE keywords
are ignored. |If PLOTSIZE is not set, then
default values are used for these parameters
that make decent-looking plots on 8-1/2 x 11"
paper.

MODIFICATION HISTORY:

David L. Windt, Bell Labs November 1989

Added DEVICE=4, November 1990.

Added 1SOTROPIC keyword, August 1991.

Added COLOR keyword, Sept 1991.

Added pcl support, completely changed device<->number mapping,
and changed functionality of small/full_page/landscape/size
keywords, May 1997.

DLW, September 1997: On Unix platforms, if DEVICE is not
set, the graphics device is set to "X" if the IDL_DEVICE
environment variable is not defined.

DLW, January 1998: Added support for CGM graphics; this
routine will do nothing more than issue the SET_PLOT, *CGM~
command, but is included for compatability with the PLOT_PRINT
routine. When using the CGM device, you will likely want to

set the color table entry for Ip.color to black; otherwise
you"ll get a white plot on a white background.

Also, fixed bug that caused graphics output to anything but PS
to fail! (Doh!)

DLW, November 2002: Keywords to the DEVICE procedure are no
longer abbreviated, for compatibility with IDL 5.5. Hey,
kids, here"s a little IDL programming tip: even though IDL
will let you, never, ever abbreviate any keywords, at least if
you want code that lasts!

windt@astro.columbia.edu

(See ./sp.pro)

SQUARE_PLOT

[Previous Routine] [Next Routine] [List of Routines]
NAME -

SQUARE_PLOT

PURPOSE:

Define Ip.region so plots come out with aspect ratio of 1.
CALLING SEQUENCE:

SQUARE_PLOT
KEYWORD PARAMETERS:

CENTER - set to center plot in window.
MODIFICATION HISTORY:

David L. Windt, Bell Laboratories, December 1991.
windt@bell-labs.com

(See ./square_plot.pro)

SYM

[Previous Routine] [Next Routine] [List of Routines]
NAME -

SYM

PURPOSE:
This function provides a convenient way to utilize the
USERSYM procedure to create an extended choice of plotting
symbols, and is intended to be used directly with the PSYM
keyword to PLOT, OPLOT, etc.

CALLING SEQUENCE:
Result=SYM(NUMBER)

INPUTS:

NUMBER - symbol number

O : dot if /FORCE_DOT is set; otherwise this is the
same as setting PSYM=0.

1 : Filled circle

2 : filled upward triangle

3 : filled downward triangle

4 - filled diamond

5 : filled square

6 : open circle

7 - open upward triangle

8 : open downward triangle

9 - open diamond

10 : open square

11 : plus

12 - X

13 : star

14 : Ffilled rightfacing triangle
15 : Filled leftfacing triangle
16 : open rightfacing triangle
17 : open leftfacing triangle

KEYWORD PARAMETERS:

FORCE_DOT - When setting NUMBER=0, set this keyword to use the
dot plotting symbol. Otherwise, setting NUMBER=0
is the same as setting PSYM=0.

OUTPUTS:

The function returns the symbol number to be used with the
PSYM keyword in the PLOT, OPLOT, etc. commands

SIDE EFFECTS:

The USERSYM procedure is used to create a symbol definition.
EXAMPLE:

To produce a plot using open circles as plotting symbols:

PLOT,X,Y,PSYM=SYM(6)

MODIFICATION HISTORY:
Martin Schultz, Harvard University, 22 Aug 1997: VERSION 1.00
D. Windt, windt@astro.columbia.edu

January 2004: Now possible to use negative values of NUMBER,
to make plots with lines connecting the symbols. Added the
FORCE_DOT keyword.

(See ./sym.pro)

SYMBOLS

[Previous Routine] [Next Routine] [List of Routines]
NAME -

SYMBOLS
PURPOSE:

Create custom plotting symbols
CALLING SEQUENCE:

SYMBOLS, SYMBOL_NUMBER, SCALE

INPUTS:
SYMBOL_NUMBER:

open circle

filled circle

arrow pointing right

arrow pointing left

arrow pointing up

arrow pointing down

arrow pointing up and left (45 degrees)
arrow pointing down and left

arrow pointing down and right.
= arrow pointing up and right.
through 18 are bold versions of 3 through 10
horizontal line

box
diamond
triangle
filled box
filled diamond
filled triangle

RRrOoONOURM~WNE
HO” [T L L L T VI |

N
N
L L O A | B V1|

SCALE - size of symbols.

KEYWORD PARAMETERS:
COLOR - color of symbols
SIDE EFFECTS:

The desired symbol is stored in the user buffer and
will be plotted if IP.PSYM = 8.

MODIFICATION HISTORY:

Jeff Bennett, U of Colorado, 198?

(See ./symbols.pro)

TEXT_WIDTH

[Previous Routine] [Next Routine] [List of Routines]
NAME -

TEXT_WIDTH
PURPOSE:
Function to determine the actual displayed width
(approximately!) of a string of text, in normalized character
units, accounting for the fact that non-equal spacing is used
when such a string is displayed on a plot using XYOUTS.
This function is used, for example, by the PLOT_TEXT and
LEGEND procedures to ~correctly draw a box around displayed
text.
CALLING SEQUENCE:
Result=TEXT_WIDTH(TEXT_STRING)
INPUTS:
TEXT_STRING - a string of text
KEYWORD PARAMETERS:

FONT - Set to an integer from 3 to 20 (corresponding to the
Hershey vector font sets,) referring to the font that
will be used to display the text. (Any font commands
embedded in the text string are ignored.)

RESTRICTIONS:

This function hardly works perfectly, especially when the text
string contains a mix of fonts; superscripts and subscripts

will really mess things up as well. But it comes close
many instances.

PROCEDURE:

A table of normalized character widths (determined using the
13 font) is used to determine the width of the text string.

In order to account for the use of IDL font manipulation
commands, the "!®" symbol and the character immediately
following it are not counted, except for the case of two
consecutive "!" symbols.

EXAMPLE:
Determine the width of a text string:
width=TEXT_WIDTH("13This is some displayed text®,font=3)

MODIFICATION HISTORY:

David L. Windt, Bell Labs, October 1997
windt@bell-labs.com

(See ./text_width.pro)

TRACK_PLOT

[Previous Routine] [Next Routine] [List of Routines]
NAME

TRACK_PLOT

PURPOSE:

A procedure to plot X vs Y in a widget, track the cursor
position, and interactively display the Y(X) value.

CALLING SEQUENCE:
TRACK_PLOT,X,Y
INPUTS:
X, Y - 1-D arrays
KEYWORD PARAMETERS:
WXSIZE - Draw widget X size, in pixels. (Default=640)

WYSIZE - Draw widget Y size, in pixels. (Default=480)

CROSSHAIR - Set this to display a crosshair at the current
Y(X) value.

plus all valid IDL PLOT keywords.
RESTRICTIONS:

Requires widgets. Requires use of the VALUE_TO_ INDEX function
in the windt library.

EXAMPLE:
Create some X,Y data and plot it using TRACK PLOT:
X=VECTOR(0.,100.,256)
Y=SIN(X/5.)*EXP(-X/20.)
TRACK_PLOT,X,Y
MODIFICATION HISTORY:

D. L. Windt, Bell Laboratories, August 1997
windt@bell-labs.com

March, 1998 - Added crosshair display option and CROSSHAIR
keyword.

(See ./track_plot.pro)

TWOSCOMPLEMENT

[Previous Routine] [Next Routine] [List of Routines]
NAME -
TWOSCOMPLEMENT

PURPOSE:
Taking the Two"s Complement of an integer

CATEGORY:
Math, Hardware, CAMAC

CALLING SEQUENCE:
twoscomp = TwosComplement(int)

INPUT:
int - raw encoder value (8, 16 or 32 bit integer)

OUTPUT:
twoscomp - Two"s complement of input.

KEYWORDS:
Optional Input:

NBITS - # of bits; throw away this bit if there is a carry after
adding 1 to the complement. Default is determined by data
type.
IfNeg - Only return the Two"s Complement if value negative
ALGORITHM:

Taking the Two*s Complement of a k-Digit Bitstring:

1.Complement the bitstring; i.e., change all Os to 1s and all 1s to Os;
retain all leading Os in your result.
2.Add 1 to this binary number (if there is a carry of 1 into the (k+l)st
position, throw it away so that the
result is still k-digits).
3.The result from (2) is the two"s complement of the bitstring

COMMENT :
Works in many cases, but sign bit may get extended in some
applications
MODIFICATION HISTORY:
5-Jun-00 WMD Added Nbits & ITNeg Keywords

(See ./twoscomplement.pro)

VALUE_TO_INDEX

[Previous Routine] [Next Routine] [List of Routines]
NAME -

VALUE_TO_INDEX

PURPOSE :
Given a (1D) ARRAY and a scalar VALUE, determine the array INDEX
corresponding to the element of the array that is closest in
magnitude to the specified value.

CALLING SEQUENCE:

Index=VALUE_TO_INDEX(ARRAY, VALUE)

INPUTS:
ARRAY = 1D array of values
VALUE = scalar value
EXAMPLE:
ARRAY=Findgen(100)/99.*5 ; Create an array of 100 pts from O to 5.

Index=VALUE_TO_INDEX(ARRAY,3.125) ; find the element of ARRAY whose value
; Is closest to 3.125.

In this case, Index=62 (i.e., ARRAY(62)=3.13131)
MODIFICATION HISTORY:
David L. Windt, Bell Labs, March 1997.
May 1998 - Realized that this function is hardly necessary, as one
can just make wise use of the min function and

the !c system variable. Duh!

windt@bell-labs.com

(See ./value_to_index.pro)

VECTOR

[Previous Routine] [Next Routine] [List of Routines]
NAME -

VECTOR
PURPOSE:

Make a vector of PTS points, with values ranging from MIN to
MAX .

CALLING SEQUENCE:
Result = VECTOR(MIN,MAX,PTS)
INPUTS:
MIN - Starting value for vector.
MAX - Ending value for vector.
PTS - Number of points.
KEYWORDS:

LOGARITHMIC - set for logarithmic spacing between points.
[MIN and MAX must be positive, i.e., gt 0]

OUTPUTS:

This function returns a vector of PTS points, ranging from MIN
to MAX. The returned vector is of the same type as MIN/MAX.

EXAMPLE:

X=VECTOR(5. ,100. ,1000)

This example returns a 1-D Floating point array X, made up of
1000 points, ranging from 5. to 100.

X=VECTOR(5.d,100.d,1000)

This example returns a 1-D Double point array X, made up of
1000 points, ranging from 5. to 100.

MODIFICATION HISTORY:
David L. Windt, Bell Labs, June 1993.

March, 1997- modified code so returned vector is same type as
MAX. added LOGARITHMIC keyword.

May, 1998 - corrected a bug which occurred when LOGARITHMIC
was set and PTS=1.

October, 1998 - corrected a bug which, when LOGARITHMIC was
set, had caused the log of MIN and MAX to be
returned if these parameters are passed as
named variables (rather than constants.)

windt@bell-labs.com

(See ./vector.pro)

WRITE_MPEG

[Previous Routine] [Next Routine] [List of Routines]
NAME -

WRITE_MPEG

PURPOSE:
Write a sequence of Images as an mpeg movie

CATEGORY: utility

CALLING SEQUENCE:
WRITE_MPEG, "movie.mpg®,ims

INPUTS:
ims: sequence of images as a 3D array with dimensions [sx, sy, nims]

where sx = xsize of images
sy = ysize of images
nims = number of images

OPTIONAL INPUTS:

KEYWORD PARAMETERS:
delaft: if set delete temporary array after movie was created
you should actually always do it otherwise you get
problems with permissions on multiuser machines (since
/tmp normally has the sticky bit set)
rep: if given means repeat every image "rep” times
(as a workaround to modify replay speed)

OUTPUTS: None
OPTIONAL OUTPUTS:
COMMON BLOCKS:
SIDE EFFECTS:

creates some files in TMPDIR which are only removed when
the DELAFT keyword is used

RESTRICTIONS:
depends on the program mpeg_encode from University of
California, Berkeley, which must be installed in Zusr/local/bin

PROCEDURE:
writes a parameter file based on the dimensions of the image
array + the sequence of images in ppm format into a
temporary directory; finally spawns mpeg_encode to build the
movie

EXAMPLE:

MODIFICATION HISTORY:

Mon Nov 18 13:13:53 1996, Christian Soeller
<csoelle@mbcsgl.sghms.ac.uk>

grabbed original from the net and made slight modifications

(See ./write_mpeg.pro)

XDISPLAYFILE

[Previous Routine] [Next Routine] [List of Routines]
NAME -

XDISPLAYFILE

PURPOSE:
Display an ASCII text file using widgets and the widget manager.

CATEGORY:
Widgets.

CALLING SEQUENCE:
XDISPLAYFILE, Filename

INPUTS:
Filename: A scalar string that contains the filename of the file
to display. The Ffilename can include a path to that file.

KEYWORD PARAMETERS:
BLOCK: Set this keyword to have XMANAGER block when this
application is registered. By default the Xmanager
keyword NO _BLOCK is set to 1 to provide access to the
command line if active command line processing is
available.
Note that setting BLOCK for this application will cause
all widget applications to block, not only this
application. For more information see the NO_BLOCK keyword
to XMANAGER.

DONE_BUTTON: the text to use for the Done button. If omitted,
the text "Done with <Ffilename>" is used.

EDITABLE: Set this keyword to allow modifications to the text
displayed in XDISPLAYFILE. Setting this keyword also
adds a "'Save™ button in addition to the Done button.

FONT: The name of the font to use. |If omitted use the default
font.

GROUP: The widget ID of the group leader of the widget. If this
keyword is specified, the death of the group leader results in
the death of XDISPLAYFILE.

HEIGHT: The number of text lines that the widget should display at one
time. |IFf this keyword is not specified, 24 lines is the
default.

TEXT: A string or string array to be displayed in the widget
instead of the contents of a file. This keyword supercedes
the FILENAME input parameter.

TITLE: A string to use as the widget title rather than the file name
or "XDisplayFile RX0".

WIDTH: The number of characters wide the widget should be. If this

keyword is not specified, 80 characters is the default.

WTEXT: Output parameter, the id of the text widget. This allows
setting text selections and cursor positions programmatically.
OUTPUTS:

No explicit outputs. A fTile viewing widget is created.

SIDE EFFECTS:
Triggers the XMANAGER if it is not already in use.

RESTRICTIONS:
None.

PROCEDURE:
Open a file and create a widget to display its contents.

MODIFICATION HISTORY:

Written By Steve Richards, December 1990
Graceful error recovery, DMS, Feb, 1992.
12 Jan. 1994 - KDB

IT file was empty, program would crash. Fixed.

4 Oct. 1994 MLR Fixed bug if /TEXT was present and /TITLE was not.
2 jan 1997 DMS Added DONE_BUTTON keyword, made Done

button align on left, removed padding.

14-0ct-2003 D.L. Windt, The text widget can now be resized

interactively by the user.

(See ./xdisplayfile_rxo.pro)

XWD2GIF

[Previous Routine] [List of Routines]
NAME -

XWD2GIF
PURPOSE:

Convert an XWD image file to a GIF image file.
CALLING SEQUENCE:

XWD2GIF[,FILE=FILE]

KEYWORDS:

FILE - The name of the XWD file. If the XWD file is called

file.xwd, then the newly created gif file will be called
file.gif.

PROCEDURE:

The procedure is just a simple interface to the READ_XWD and
WRITE_GIF routines.

MODIFICATION HISTORY:
David L. Windt, Bell Labs, May 1998.

windt@bel l-labs.com

(See ./xwd2gif.pro)

	Extended IDL Help
	List of Routines
	Routine Descriptions
	ATANH
	ATOMIC_WEIGHT
	BESELI_FRACT
	BESELK_FRACT
	CHEM2LBL
	CHISQR
	CIRCLE_FIT
	CLEAR
	COM_FIND
	CONT_IMAGE
	CONT_IMAGE2
	CURVE_LABEL
	CW_BGROUP_RXO
	CW_CURVE_LABEL
	CW_DRAWSIZE
	CW_FIELD_RXO
	CW_FSLIDER_RXO
	CW_LEGEND_RXO
	CW_PLOTAXES
	CW_PLOTAXIS
	CW_PLOTLABEL
	CW_PLOTSTYLE
	CW_PLOTSTYLES
	CW_PLOTTITLE_CHAR
	CW_VECTOR
	DGTZ_IMAGE
	DGTZ_PLOT
	DIALOG
	DISPLAYED_TABLE_CELLS
	DISPLAY_FONT
	DLIB
	EDGE_FIND
	ELECTRON_MFP
	EPLOT
	EROM
	ERRORF_FIT
	EXPO_FIT
	FILE_DATE
	FINDEX
	FLOYD_SAMPLING
	FRACTAL_FIT
	FWHM
	GAUSSEXPO_FIT
	GAUSS_FIT
	GET_PEAK
	GET_PT
	GET_ROI
	GHOSTVIEW
	GREEK
	KAISER_BESSEL
	LEGEND_RXO
	LPRINT
	LS
	MAKE_LATEX_TBL
	MK_BITARRAY
	MK_NEW_PTRS
	MORE
	MPFIT
	OEPLOT
	PLOT_MOVIE
	PLOT_PRINT
	PLOT_TEXT
	PROFILE_NI
	PTRS_NEW
	PWD
	RECROI
	RECTANGLE
	REC_IMAGE
	ROI_WIDTH
	ROTATION
	ROT_MAT
	RXO_COLOR
	SECONDS2CLOCK
	SHIFT_PLOT
	SHOW_CT
	SINC
	SINCSQUARE_FIT
	SMALL_WINDOW
	SP
	SQUARE_PLOT
	SYM
	SYMBOLS
	TEXT_WIDTH
	TRACK_PLOT
	TWOSCOMPLEMENT
	VALUE_TO_INDEX
	VECTOR
	WRITE_MPEG
	XDISPLAYFILE
	XWD2GIF

